

Chameleon
Whitepaper

Privacy Mode for Blockchain and Crypto

Introduction

1. Introduction: A Platform of Decentralized Privacy Coins

2. Shielding Cryptocurrencies: Turning Any Cryptocurrency Into a Privacy Coin

3. Trustless Custodians: A Decentralized Approach to Cryptocurrency Custodianship

4. Sending Cryptocurrencies Confidentially: Ring Signature, Homomorphic Commitment, and

Zero-Knowledge Range Proofs

5. Privacy at Scale with Dynamic Sharding

6. Consensus: A Combination of iPoS, Multiview-PBFT, and BLS

7. Multiview PBFT

8. Chameleon Software Stack: Navigating the Chameleon Source Code

9. Chameleon Performance

10. Network Incentive: CHML

11. User-Created Privacy Coins

12. Use Cases: Privacy Stablecoins, Privacy DEX, Confidential Crypto Payroll, and more

13. Highway: an Upgrade to Chameleon Network Topology

14. Privacy Mode for dApps on Ethereum

15. Future Work: Smart Contracts, Confidential Assets, Confidential IP, and more

16. Conclusions, Acknowledgments, and References

chml.network 1

https://chml.network

Introduction: A Platform of Decentralized Privacy Coins

In the near future, anyone will be able to send BTC, ETH, and thousands of other

cryptocurrencies to another party without going through a financial institution [Nakamoto, 2008;

Buterin et al., 2014]. However, for those who value privacy, these cryptocurrencies will still come

with a significant tradeoff. Transactions will continue to be recorded on public ledgers, displaying

transaction amounts and inscribing the virtual identities of their senders and receivers. Given the

choice, we strongly believe that very few people will willingly disclose their crypto financials to

the entire world.

The inherent lack of privacy in cryptonetworks will remain a real and present threat to the entire

crypto space.

Existing solutions like Monero, Zcash, and Grin introduced their own version of cryptocurrencies

that focus on privacy, based on CryptoNote, Zerocash [Sasson et al., 2014], and Mimblewimble

[Jedusor, 2016], respectively.

Chameleon will take a different approach, grounded in the idea that people won’t want an

entirely new cryptocurrency with privacy. What they will truly want is privacy for their existing

cryptocurrencies: a "privacy mode" for any cryptocurrency.

The Chameleon Network will be designed so that users won't have to choose between their

favorite cryptocurrencies and privacy coins. They will be able to have both. Users will be able to

hold any cryptocurrency and still use it confidentially whenever they desire. Privacy will be

ubiquitous, inclusive, and accessible.

chml.network 2

http://zerocash-project.org/media/pdf/zerocash-oakland2014.pdf
https://scalingbitcoin.org/papers/mimblewimble.txt
https://chml.network

 Figure 1: Chameleon Network as a privacy hub.

The Chameleon Network will act as a privacy hub, interoperable with other cryptonetworks

through shielding and unshielding processes. These processes will allow cryptocurrencies like

BTC and ETH to go private and then return to their original form.

Initially, Chameleon will propose a solution to shield any cryptocurrency, such as BTC, ETH, and

USDT. Essentially, any cryptocurrency will be able to become a privacy coin. Both shielding and

unshielding will be carried out via a decentralized group of trustless custodians. Once shielded,

transactions will become confidential and untraceable. To ensure privacy, Chameleon will employ

linkable ring signatures, homomorphic commitment schemes, and zero-knowledge range proofs.

Secondly, Chameleon will present a solution for scaling out a privacy-focused cryptonetwork by

implementing sharding on privacy transactions, along with a new consensus model based on

proof-of-stake, pBFT, and BLS. Transaction throughput will scale linearly with the number of

shards.

At launch, with 8 shards active, Chameleon Network will aim to achieve a throughput of 100 TPS.

Once fully deployed with 64 shards, it will be capable of handling up to 800 TPS – a significantly

higher throughput than most other privacy blockchains, which usually handle less than 10 TPS.

chml.network 3

https://chml.network

This approach will be inspired by Incognito's architecture, which has demonstrated similar

scalability and performance.

Chameleon Network will launch its mainnet as a privacy-protecting, high-performance

cryptonetwork, delivering "privacy mode" for other cryptonetworks like Bitcoin and Ethereum.

Based on Incognito's stats from February 2020, Incognito had 8 shards, powered by over 1,000

validators, and had confidentially processed over $1.4M worth of crypto across 74 different

currencies like BTC, ETH, and USDT. Chameleon Network will aspire to achieve similar milestones

and extend these capabilities even further.

chml.network 4

https://chml.network

Shielding Cryptocurrencies: Turning Any Cryptocurrency

Into a Privacy Coin

Shielding any cryptocurrency into a privacy coin

Shielding will be the process of transforming cryptocurrencies on other cryptonetworks (or

“public coins”) into privacy coins on Chameleon.

Privacy coins

Through the Chameleon Network, a public coin will be shielded to obtain its privacy coin

counterpart of the same value. For example, BTC will be shielded to obtain the privacy coin

pBTC. pBTC will have the same value as BTC, so 1 pBTC can always be redeemed for 1 BTC and

vice versa.

Once shielded, privacy coin transactions will be confidential and untraceable. A privacy coin on

the Chameleon Network will offer the best of both worlds: it will retain the value of its original

counterpart while being transacted confidentially on the Chameleon Network.

PRIVACY COINS COUNTERPART NUMBER OF TRANSACTIONS

pBTC BTC 432,755

pUSDT USDT 385,451

pETH ETH 361,648

 Table 1: The top three privacy coins on the previous network from 2019 to 2024.

Shielding

The shielding mechanism will be based on the experience of building the first-generation

trustless bridge, inspired by the framework used between Chameleon and Ethereum. It will be

generalized to enable a broader range of cryptonetworks to be interoperable with the

Chameleon Network.

chml.network 5

https://chml.network

Current blockchain interoperability solutions will mostly involve building ad-hoc bridges. For

example, BTC Relay [BTC Relay, 2019], WBTC [WBTC, 2019], and TBTC [TBTC, 2019] create

specific bridges between Bitcoin and Ethereum, while Kyber Network builds Waterloo [Baneth,

2019], an ad-hoc bridge between Ethereum and EOS. For Chameleon, doing it ad hoc—one

bridge for every cryptonetwork—will not be a scalable option.

Chameleon Network will take a different approach: build once, and work with any cryptonetwork.

The shielding mechanism will operate via a general bridge design that connects Chameleon to a

wide range of cryptonetworks, enabling secure bi-directional transfers of cryptocurrencies

whenever privacy is required. This means any coin will be able to transform into a privacy coin.

This approach will be particularly valuable for creating interoperability with cryptonetworks that

do not support smart contracts, such as Bitcoin and Binance Chain.

To obtain privacy coins, the user will first submit a shielding request to the Bond smart contract

with details about which public coins they wish to shield and the amount. The Bond smart

contract will then select trustless custodians for the public coins and provide the user with the

custodians' deposit addresses. Once the deposit is confirmed on the cryptonetwork of the public

coins, the user will initiate a shielding transaction on Chameleon along with the deposit proof. A

deposit proof on a cryptonetwork will typically be a Merkle branch that links the deposit

transaction to the block in which it is time-stamped, ensuring that the deposit transaction has

been accepted by that cryptonetwork.

Figure 1. SPV in Bitcoin [Nakamoto, 2008]. Other cryptonetworks employ similar SPV methods.

chml.network 6

http://btcrelay.org/
https://www.wbtc.network/assets/wrapped-tokens-whitepaper.pdf
https://bankless.ghost.io/content/files/tbtc/index.pdf
https://medium.com/kybernetwork/waterloo-a-decentralized-practical-bridge-between-eos-and-ethereum-1c230ac65524
https://medium.com/kybernetwork/waterloo-a-decentralized-practical-bridge-between-eos-and-ethereum-1c230ac65524
https://chml.network

Note that while we have designed a general bi-directional bridge between Chameleon and other
cryptonetworks, we still need to implement the specific SPV logic for each cryptonetwork we add to the
bridge. This includes relaying block headers from those cryptonetworks to Chameleon and performing
SPV on deposit proofs.

Chameleon validators will verify the shielding transaction and the deposit proof inside it,
specifically using Simplified Payment Verification [Nakamoto, 2008]. Most cryptonetworks,
including the Chameleon Network, will support Simplified Payment Verification with a few small
differences in the underlying data structures. For example, Bitcoin and Binance will implement
Merkle Tree [Merkle, 1980], while Ethereum will implement a modified Merkle Patricia Tree [Wood,
2014].

Once the deposit proof is verified, new privacy coins will be minted at a 1:1 ratio.

 Figure 2. Shielding BTC and minting pBTC in the Chameleon Network.

chml.network 7

https://bitcoin.org/bitcoin.pdf
http://www.ralphmerkle.com/papers/Protocols.pdf
https://ethereum.github.io/yellowpaper/paper.pdf
https://ethereum.github.io/yellowpaper/paper.pdf
https://chml.network

 Other public coins follow the same shielding process. Note that we simplify step 5 to make it easier for
readers to follow the main logic: the proof of deposit is not generated by the custodian but by the miners
of the underlying crypto network.

Unshielding

Unshielding will be the reverse process of shielding: turning privacy coins back into public
coins.

The user will initiate an unshielding transaction on Chameleon with information about which
privacy coins they want to unshield and the amount.

Chameleon validators will verify the unshielding transaction, burn the privacy coins, and issue a
burn-proof. A burn-proof on Chameleon will be cryptographic proof. When signed by more than
⅔ of Chameleon validators, it will prove that the privacy coins have been burned on the
Chameleon network.

The user will then submit the burn-proof to the Bond smart contract, which will verify the
burn-proof and instruct a custodian to release the public coins that back those privacy coins at a
1:1 ratio. Once the release is confirmed on its respective crypto network, the custodian will submit
the released proof to the Bond smart contract. Similar to the deposit proof, a release proof will be
a Merkle branch linking the release transaction to the block it is time-stamped in, proving that the
release transaction has been accepted by that crypto network.

After verifying the released proof, the Bond smart contract will free up the custodian’s collateral.
Custodians will be able to withdraw their collateral or start taking new user deposits.

chml.network 8

https://chml.network

Figure 3. Unshielding pBTC and releasing BTC. Other public coins follow the same unshielding process.

We will propose a mechanism for turning cryptocurrencies on other cryptonetworks (or “public
coins”) into privacy coins, based on a set of trustless custodians. Once shielded, privacy coin
transactions will be confidential and untraceable. A privacy coin will enjoy the best of both
worlds: it will retain the value of its original counterpart and can be transacted confidentially on
the Chameleon Network.

An exception will be addressed in the Auto-Liquidation section in the Trustless Custodians.

chml.network 9

https://chml.network

Trustless Custodians: A Decentralized Approach to
Cryptocurrency Custodianship

A Decentralized Approach to Cryptocurrency Custodianship

Custodians will play a crucial role in the shielding mechanism that will turn cryptocurrencies—like
BTC, ETH, and USDT—into privacy coins.

Existing custodian solutions, such as Bitgo and Coinbase Custody, will remain centralized and
expensive. Trusted third parties will continue to pose security vulnerabilities [Szabo, 2001].
Moreover, centralized custody will require users to share their private information with third
parties.

Chameleon will take a decentralized approach to custodianship. Instead of relying on a single
centralized authority like Bitgo or Coinbase Custody, the Chameleon Network will utilize multiple
custodians. Anyone will be able to become a custodian by simply supplying a bond.

A smart contract on Ethereum will be implemented to manage bonds and ensure that the system
operates exactly as programmed. Not only will the Bond smart contract be trustless, but it will
also provide real-time processing, in contrast to the multi-day manual processes used by
centralized custodian companies.

Initially, a fixed custodian fee structure will be implemented for simplicity. However, this could be
further enhanced by adopting a market-driven custodian fee model, where users will set their
own fees, and custodians will compete for user deposits.

Feature Chameleon BITGO

Privacy ✓ ✕

Trustless ✓ ✕

Insured by collateral ✓ ✕

Processing time Instant Days

Fees Low High

Table 1: A comparison between Chameleon and centralized custodians like Bitgo and Coinbase

Custody.

chml.network 10

https://nakamotoinstitute.org/library/trusted-third-parties/
https://chml.network

The Bond Smart Contract

The Bond smart contract will serve as the bridge between Chameleon, custodians, and other

cryptonetworks like Bitcoin and Binance Chain. There will be multiple implementations of the

Bond smart contract on different cryptonetworks, including Chameleon itself, using their

respective cryptoassets as collateral.

The first implementation will be programmed as an Ethereum smart contract [Wood, 2014].

Ethereum will be chosen because its smart contract platform is battle-tested, and it offers a wide

range of liquid cryptoassets suitable as collateral.

Figure 1. The Bond smart contract is programmed to glue together custodians, Chameleon, and other

cryptonetworks like Bitcoin and Binance Chain.

chml.network 11

https://ethereum.github.io/yellowpaper/paper.pdf
https://chml.network

The Bond smart contract will be programmed to:

1. Escrow collateral in ETH and liquid ERC20 tokens bonded by custodians.

2. Set the maximum total amount of user deposits a custodian can accept based on the

Collateral-to-Deposit ratio.

3. Verify deposit proofs on other cryptonetworks and submit valid proofs to Chameleon for

minting privacy coins.

4. Verify burn proofs of privacy coins on Chameleon and instruct custodians to release

public coins.

5. Verify custodians’ release proofs on other cryptonetworks and free up their collateral,

enabling custodians to withdraw their collateral tokens or take new user deposits.

6. Liquidate collateral if necessary, in accordance with the protocol's rules for protecting

user funds.

Over-Collateralized Bonds

Custodians will be required to bond collateral into the Bond smart contract. Bonded collateral
tokens will serve as a safeguard, providing recourse when custodians misbehave. The Bond
smart contract will only accept ETH and liquid ERC20 tokens as collateral.

Because cryptocurrency prices will remain volatile, the value of bonds will also fluctuate. To
address this, custodians will need to overbond, ensuring that the total amount of user deposits to
a single custodian will not exceed the total value of the custodian's bonded collateral.

A parameter α will be introduced, initially set at 200%. This Collateral-to-Deposit ratio will ensure
that user deposits are always fully backed, even in the event of a significant drop in collateral
value.

For example, as a custodian, Alice will need to bond at least $2,000 worth of ETH and ERC20
tokens into the Bond smart contract if she wishes to accept $1,000 worth of BTC user deposits.

Auto-Liquidation

Over-collateralization will ensure that custodians do not misbehave.

During the unshielding process, if Alice fails to send the public coins back to Bob in full, Alice’s
bonded collateral will be used to repay Bob. In this case, the public coins Bob receives—Alice’s
collateral, to be precise—may differ from Bob’s original public coin, but their total value will be the
same or greater than the value of Bob’s original deposit.

chml.network 12

https://chml.network

Auto-liquidation also triggers if the value of bonded collateral drops significantly. Custodians must
add more collateral to avoid auto-liquidation. We introduce a parameter 𝛽, initially set at 120%. If α
is the upper bound, 𝛽 is the lower bound or the liquidation threshold. 𝛽 ensures that total
custodian collateral amounts do not fall below total user deposits.

A future improvement could involve automatically liquidating collateral on a decentralized
exchange such as Kyber [Luu and Yaron, 2017], Uniswap [Adam, 2018], or Chameleon pDEX.

Incentives

First, custodians will earn shielding fees and unshielding fees. The initial fee structure will be
straightforward, with a fixed shielding fee of 0.1% and an unshielding fee of 0.1%.

In the future, as part of a market-driven pricing structure, users could set their own fees, and
custodians could prioritize processing transactions with the highest fees. A more advanced fee
structure might also consider shielding, unshielding, and custodial times.

Second, custodians will earn CHML, the native coin of Chameleon, through shield mining. In
traditional cryptonetworks, mining rewards come solely from block mining, where miners earn
rewards for producing new blocks. In Chameleon, custodians will participate in shield mining
alongside block mining, earning CHML for shielding public coins. The more a custodian shields,
the greater the CHML rewards they earn. The Chameleon DAO funds shield mining rewards.

The shield mining reward rᵢ for a custodian cᵢ at block height k is computed as follows, where R�

is the total shield mining reward for that block, n is the number of custodians, and bᵢ is the

bonded collateral value from custodian cᵢ.

This design outlines a decentralized approach to custodianship. While this mechanism is

designed specifically for Chameleon, it is hoped that the community will find it valuable and

expand upon it to develop more fully decentralized systems of custodians.

chml.network 13

https://kyber.network/
https://hackmd.io/C-DvwDSfSxuh-Gd4WKE_ig
https://chml.network

Sending Cryptocurrencies Confidentially: Ring Signature,

Homomorphic Commitment, and Zero-Knowledge Range

Proofs

Sending Cryptocurrencies Confidentially

Once public coins are shielded, they will be confidentially sent, received, stored, and traded as

privacy coins. Custodians may retain records of the total number of privacy coins minted but will

have no visibility into how these privacy coins are utilized afterward. Every privacy coin

transaction will remain confidential and untraceable, even to custodians and validators.

Chameleon will employ advanced cryptographic primitives, including linkable ring signature

schemes, homomorphic commitment schemes, and zero-knowledge range proofs, to obscure

sending addresses, receiving addresses, and transacted amounts.

Fungibility: The Basis of Monetary Privacy

All privacy coins issued on the Chameleon network will be fungible—fulfilling one of the

fundamental requirements of money. A unit of currency must be identical and interchangeable

with another.

Ring Signatures: Shielding Sending Addresses

A ring signature scheme will enable a member of a group to sign a message on behalf of the

group without revealing the signer’s identity [Chaum and Van Heyst, 1991; Fujisaki and Suzuki,

2007; Van Saberhagen, 2013]. Signer anonymity is maintained by ensuring each group member

has an equal probability of being the actual signer.

chml.network 14

https://chml.network

Figure 1. The identity of the signer is obscured. For example, if you encounter a ring signature with the

public keys of Annie, Bob, John, and Peter, you will be able to claim that one of these users is the signer,

but not pinpoint him or her.

Group formation in a ring signature scheme will be spontaneous, with no centralized manager to

uncover the identity of the true signer. Due to these characteristics, such groups are referred to

as ad hoc groups or rings. A signer will form a group by collecting public keys from other group

members. These additional group members, known as decoys or mixins, will be drawn from

historical transactions. The unified signature generated by the ring provides anonymity for the

true signer.

In Chameleon, ring signatures will be utilized to authorize the spending of an Unspent

Transaction Output (UTXO) [Nakamoto, 2008], without exposing the identity of the spender.

Each ring will comprise the actual UTXO being spent along with its decoys, which will consist of

random outputs from historical transactions. Together, the actual UTXO and its decoys will form

the transaction inputs.

From a public perspective, any of these inputs could plausibly be the actual output being spent.

This uncertainty ensures that the true spender remains indistinguishable within the group,

thereby safeguarding the privacy of the transaction.

chml.network 15

https://chml.network

 Figure 2. Visualization of ring signature. The notion of ring signature was first proposed as a way
of whistleblowing [Rivest et al., 2001]

Since it will be impossible to determine which UTXO is being spent in a ring signature scheme,

there is the potential for a double-spending problem [Finney, 1993]. To mitigate this, Chameleon

will implement a variant of the ring signature called Linkable Ring Signature [Liu et al., 2004].

This approach adds a crucial property: linkability.

With linkability, any signature issued under the same public key—whether for the same or

different messages—will have a unique identifier called a serial number. These serial numbers

enable verification of whether two signatures originate from the same group member without

disclosing the signer’s identity.

In Chameleon's implementation, a serial number will be derived from each UTXO being spent

and included in every ring signature. To prevent double-spending, a list of used serial numbers

will be permanently stored as part of the transaction data. If a new ring signature attempts to

reuse an existing serial number, it will be automatically rejected, ensuring robust protection

against double-spending.

This combination of anonymity and accountability ensures that privacy is preserved while

maintaining the integrity of the Chameleon network.

chml.network 16

https://chml.network

Stealth Addresses: Shielding Receiving Addresses

In traditional cryptonetworks like Bitcoin or Ethereum, a public address is all that is required to

view the complete history of incoming and outgoing transactions associated with that address

[Reid and Harrigan, 2013]. This level of transparency can reveal total balances, spending

patterns, and other details, making it easy to link transactions.

To prevent such linking and ensure privacy, Chameleon introduces stealth addresses—a type of

one-time public key. For every incoming transaction, Chameleon automatically generates a

unique one-time public key. These stealth addresses act as one-time deposit boxes, ensuring

that:

1. Only the intended receiver can access the contents of the deposit box.

2. Each incoming transaction appears independent, making it impossible to correlate

transactions or infer the receiver's total balance.

By using stealth addresses, Chameleon ensures that the sender, receiver, and transacted

amount remain confidential. This cryptographic mechanism significantly enhances user privacy

while maintaining the flexibility and functionality of a decentralized network.

 Figure 3. Creating multiple unique one-time keys

chml.network 17

https://chml.network

Stealth addresses in Chameleon are built on the Diffie-Hellman key exchange protocol [Diffie

and Hellman, 1976], a cryptographic method enabling two users to create a shared secret, even

in the presence of an eavesdropper monitoring all communications.

A Chameleon address is composed of:

● A public view key, which is used to receive transactions.

● A public spend key, which is paired with a private spend key to authorize outgoing

transactions.

How Stealth Addresses Work

1. Transaction Setup
When Alice wants to send privacy coins to Bob, she uses:

○ Bob’s public view key and public spend key.

○ A piece of fresh randomness.

2. Using these inputs, Alice derives a one-time public key for Bob’s new UTXO. This

derivation is done such that only Bob can compute the corresponding one-time private

key.

3. Receiving the UTXO

○ Bob scans all incoming transactions using his private view key to identify the

UTXO intended for him.

○ Once identified, Bob computes the one-time private key corresponding to the

one-time public key.

4. Spending the UTXO

○ Bob can spend the UTXO using his private spend key, maintaining control over

his funds.

Privacy Benefits

● The transaction data is recorded on the Chameleon public ledger, allowing anyone to

see that a transaction occurred.

● However, the one-time public key in the transaction cannot be linked to Bob or his

Chameleon address.

For example, if Bob is a merchant, observers cannot determine that he and Alice are

conducting business, preserving their privacy.

chml.network 18

https://chml.network

Stealth addresses ensure that Chameleon transactions remain unlinkable and confidential, even

in a fully transparent public ledger environment.

 Figure 4. Stealth addresses

The transaction data is on the Chameleon public ledger. Anyone can see that a new transaction

has occurred, but cannot link the one-time public key in the transaction to Bob. If Bob were a

merchant, for example, no one would be able to determine that he and Alice are doing business

together.

chml.network 19

https://chml.network

Confidential Transactions: Shielding Transacted Amounts
Confidential transactions are employed to shield the transacted amounts on the Chameleon

public ledger [Maxwell, 2015]. While the occurrence of privacy coin transactions remains visible,

the exact amounts involved are concealed.

 Figure 5. Confidential transaction amount

The fundamental approach involves committing both input and output amounts of a transaction

using Pedersen commitments [Pedersen, 1991]. A commitment combines the value of a

transaction with a blinding factor, which serves as randomness that prevents others from

determining the value. The value and blinding factor can later be revealed by the committer,

allowing others to verify the validity of the commitment.

Figure 6 . Commitments are equipped with zero-knowledge range proofs to prove their validity

chml.network 20

https://chml.network

Addressing Validation Challenges

The first challenge arises when validators can no longer verify the transaction due to the inability

to confirm that the sum of inputs matches the sum of outputs. To resolve this, zero-knowledge

proofs [Goldreich et al., 1991] are integrated into each transaction, enabling the prover to

demonstrate knowledge of a statement's truth without revealing any additional details beyond its

validity.

Thanks to the homomorphic property [Gentry and Boneh, 2009], all input commitments can be

aggregated into a single input commitment, and all output commitments can be aggregated into

a single output commitment. The sum of these commitments represents a commitment to the

total value, with the blinding factor serving as the sum of individual blinding factors in the

commitments.

A commitment to zero emerges as a valid public key, with its corresponding private key being

the blinding factor. The sender then signs the difference between two such commitments,

proving that the balance has been maintained. By including this commitment in the ring signature,

the sender can demonstrate the validity of the transaction while using the blinding factor as one

of the private spend keys.

Preventing Inflation through Range Proofs

The second issue is the potential for an attacker to generate coins arbitrarily and inflate the

supply of privacy coins by committing to negative amounts. To mitigate this, each output

commitment is paired with a range proof [Boudot, 2000; Morais et al., 2019]. A range proof

verifies that the output amounts lie within a positive range, specifically within the interval [0, 2⁶⁴),

without disclosing the actual amounts.

chml.network 21

https://chml.network

Validators can now confirm the legitimacy of a transaction without needing to know the exact

amounts being transferred. To implement these range proofs efficiently, Bulletproofs [Bünz et al.,

2018] are utilized. Bulletproofs are short, non-interactive zero-knowledge proofs designed to

enable confidential transactions without requiring a trusted setup. The size of the range proof is

significantly reduced from approximately 5KB to just 700 bytes, enhancing efficiency.

Furthermore, Bulletproofs support aggregation, meaning that combining several range proofs

results in only a minimal increase in size.

Scaling Blockchain Privacy with Dynamic Sharding

Low throughput is a significant barrier to the widespread adoption of cryptocurrencies.

Throughput, measured in transactions per second (TPS), reflects the network's capacity to

process and confirm transactions. For instance, Bitcoin can handle only 7–10 TPS [Croman et al.,

2016; Li et al., 2018], while Visa processes up to 24,000 TPS [Visa, 2018].

Privacy-focused transactions, however, face even greater challenges due to the additional

computational overhead required for proof generation and verification. These transactions also

tend to be larger due to the inclusion of extra privacy-related data. Zcash, a privacy-focused

Bitcoin fork, can process only 6 TPS due to its 2 MB block size, a 150-second target block

interval, and average transaction sizes of 2000 bytes. Such constraints severely limit scalability.

Chameleon’s Solution: Sharding for Scalability

To address these throughput issues, the Chameleon Network implements sharding for privacy

transactions, drawing inspiration from systems like Omniledger [Kokoris-Kogias et al., 2018],

RapidChain [Zamani et al., 2018], and Zilliqa [Zilliqa, 2017]. Sharding allows for linear scalability,

increasing throughput proportionally as more shards are added to the network.

The Chameleon Network is architected as a network of blockchains, consisting of:

1. A Beacon Chain (acting as the "coordinator")

2. N Shard Chains (serving as the "workers")

chml.network 22

https://chml.network

The shard chains operate in parallel, independently producing blocks at the same time. The

beacon chain plays a crucial role in synchronizing these shard chains,

ensuring consistency and coordination across the network. The block production process is

divided into equal epochs, with each epoch ensuring the synchronization of all shard chains. This

design enables Chameleon to achieve high throughput while maintaining strong privacy

guarantees for its transactions.

Figure 1. Sharding on privacy transactions. Chameleon throughput scales out linearly with the number of

shards.

Shard Chains

Shards will be organized based on the last byte of sender addresses. Each shard will have its

own committee, which will be randomly assigned by the beacon chain. This shard committee will

be responsible for validating and confirming transactions within its shard.

chml.network 23

https://chml.network

Whenever a shard block is created, the beacon committee will verify the block's validity and

insert the valid block header into the beacon chain.

If the block is found to be invalid, the beacon chain will send proof to all other shards, prompting

them to vote on slashing the misbehaving shard committee.

 Figure 2. Shard Chains

chml.network 24

https://chml.network

Beacon Chain

The responsibility of the beacon chain will be to verify shard blocks and coordinate shard chains,

acting as the global state of the entire network.

● The beacon chain will verify the validity of shard blocks.

● It will confirm cross-shard information. Each shard block header will include cross-shard

information, indicating which shard this block has interacted with. This will also include the

height of each shard chain, which will be part of the block body.

● The beacon chain will manage the candidate and validator list. Whenever a user stakes

CHML to become a validator, this action will be recorded in the block header.

● The beacon chain will shuffle committees. When a new random number is generated, it

will be recorded in the beacon block header.

● The beacon block will store the Merkle root of the candidate list and the validator list,

both for the beacon chain and the shard chains.

Cross shard transaction

For cross-shard transactions, the sender shard will generate a receipt detailing all transactions

directed to the receiver shard and will forward this receipt to the receiver shard. A summary of

the cross-shard transactions will also be sent to the beacon chain. To prevent double-spending,

the UTXOs in the sender shard will be locked. The receiver shard will validate the receipt and will

wait for confirmation of cross-shard information from the beacon chain before marking the

corresponding UTXOs as spendable.

Dynamic Committee Size

At the start of an epoch:

● Substitute List at 100-400%: Committee size remains the same, but 10% of members are

replaced in a round-robin manner.

● Substitute List > 400%: Committee size increases by 15% (adjusted for previously slashed

members).

● Substitute List < 100%: Committee size decreases by 10%.

chml.network 25

https://chml.network

Dynamic Sharding

The Chameleon chain will initially be implemented with 8 shards. The number of shards could

dynamically increase, up to 256 shards. Let X be the last byte of the sender’s public keys. The

shard with id = X % number_of_shards will handle the transaction.

Each shard will have a maximum (M) of committee members. When the substitute list of all shards

exceeds 5M, the chain will double the number of shards. In this case, each shard will be split into

two new shards.

Example:

In the case of 8 shards, public keys with lastbyte = 0, 8, 16, 24, 32, 40… 240, 248

belong to shard 0. I.e., shard_id = lastbyte % number_of_shards.

If doubled to 16 shards, shard 0 will be split into shard 0 and shard 8, which are called sibling

shards. The public keys with lastbyte = 0, 16, 32,… 240 are in shard 0, and public keys

with lastbyte = 8, 24, 40,… 248 are in shard 8.

The current committee and substitute nodes in shard 0 will be split equally into shards 0 and

shard 8. This way, all committee members already have a full database to confirm any new

transactions belonging to them.

If the committee size is smaller than the minimum committee size threshold, two sibling shards

will be merged into one shard.

Example Scenario:

Let’s look at a scenario where there are 8 shards, a committee size of 50, and 200 nodes in the

substitute list. Table 1 summarizes the probability of conquering the chain, given the percentage

of nodes owned by the attacker.

chml.network 26

https://chml.network

Percentage of byzantine
validators

20% 25% 30% 35% 40%

Probability of conquering the
chain (8 shards)

2.04×10-107 2.4439×10-76 9.6104×10-56 9.6104×10-41 2.4814×10-29

Probability of conquering the
chain (16 shards)

4.163×10-214 5.973×10-152 9.236×10-111 9.1834×10-81 6.1575×10-81

 Table 1. Probability of the attacker conquering the chain.

The probability of conquering the chain is extremely low, even if an individual owns 40% of

validators.

Implementation

The implementation is mainly in the Blockchain component of the Chameleon architecture.

 Figure 14. The layered Chameleon architecture.

chml.network 27

https://chml.network

The code is going to be open-source on GitHub, with links to specific packages provided below.

● Shards: Shards are subchains. A subchain is a Proof-of-Stake blockchain with its own

committee of N nodes. A shard’s job is to produce new blocks via the Multiview Practical

Byzantine Fault Tolerance (pBFT) consensus algorithm.

● Beacon: Beacon is also a subchain. A beacon’s job is to coordinate the shards and

maintain the global state of the network.

● Synker: Synker ensures the node stays up to date among its peers and broadcasts the

node status to its peers.

● Mempool: Mempool (memory pool) is a collection of transactions and blocks that are

verified but not yet confirmed.

● Wallet: Software that will hold all your Chameleon keys. It will be used to send and

receive Chameleon tokens.

● Database: Chameleon will use LevelDB to store block data.

chml.network 28

https://chml.network

Consensus: A Combination of iPoS, Multiview-pBFT, and

BLS

Both beacon chains and shard chains will use the same consensus mechanism to produce new

blocks.

Chameleon Proof-of-Stake (iPoS)

Chameleon will implement the more energy-efficient Proof-of-Stake (PoS) [King and Nadal,

2012] instead of Proof-of-Work (PoW) [Dwork and Naor, 1992; Juels, 1999]. In the first generation

of PoS, each staking node (validator) will have one vote. The more validators there are, the

more secure the chain becomes. However, PoS will not be a scalable consensus; communication

overhead will increase linearly with the committee size. Research will show that PoS can only

achieve a reasonable level of security when there are 600 validators or more in the committee

[Luu et al., 2016]. A committee of 600 nodes will face real challenges in syncing statuses and

exchanging messages to create a new block.

To overcome the scaling-related communication problems, Delegate Proof of Stake (DPoS) will

be proposed, initially by Bitshares (https://bitshares.org/). This will be considered the second

generation of PoS. In DPoS, only a small group of validators will be selected into the committee,

giving them the right to propose and verify new blocks. This approach will solve the

communication problem of PoS, but it will sacrifice some decentralization and trustlessness

properties, specifically:

● Staking nodes will have to trust delegated nodes.

● The smaller the committee size, the easier it can be compromised.

● Only delegated nodes will work (i.e., propose & verify blocks), while staking nodes will

not participate in block creation.

Chameleon will propose iPoS (interactive Proof-of-Stake), which will enable both scalability and

trustlessness. Anyone will be able to become a validator candidate by staking CHML. The

beacon chain will randomly assign validators to each shard. At any given moment, only a small

group of validators in a shard will be selected to form the committee. The committee for each

chml.network 29

https://bitshares.org/
https://chml.network

shard will be responsible for proposing and verifying blocks. The committee will rotate

periodically, ensuring every validator contributes equally.

As for decentralization, each shard block signed by the shard committee will be verified by the

beacon committee. If any incorrect transaction, such as an airdrop or double-spending, is

detected, the beacon chain will inform all other shards using proof. All honest shards will vote to

slash the byzantine shard’s committee.

Multiview Practical Byzantine Fault Tolerance (M_PBFT)

Chameleon Network will propose and implement a variant of pBFT (practical Byzantine Fault

Tolerance) [Castro et al., 1999] at the consensus layer. We will further improve its efficiency by

employing the BLS-based aggregate multi-signature scheme (AMSP) [Boneh et al., 2018].

Tendermint, a popular implementation of pBFT, requires participants to have the same view for

every block minted. Nodes must sync their status at every block, which causes communication

overhead. Chameleon will propose multiview pBFT, whereby a node makes decisions based on

its best view and does not require the syncing status of other nodes in the committee. Find more

details on multiview pBFT.

Validator Life Cycle

Common pool: new staking node, waiting to be assigned to a particular shard Sync pool: sync

the assigned shard’s data

Substitute pool: node finished sync its data, queueing in the substitute list of its shard

Committee pool: validate and vote blocks

4 states: new (in common pool), candidate (in sync pool), substitute (in substitute pool), committee

(in committee).

chml.network 30

https://chml.network

 Figure 1. Life cycle

Slashing Rules

For Chameleon Network, we will prefer a light punitive approach when it comes to slashing —
i.e., a slashing policy that does not deduct any CHML from the stake or rewards of the
validators. However, the policy must effectively prevent misbehavior and unreliability.

For each shard:

1. If MissingSig <= ExpectedShardBlock / 2, then the node will be forced to
unstake.

2. If MissingSig > ExpectedShardBlock / 2, then the node will not receive any
penalty.

The ExpectedShardBlock is calculated as follows:
Let M be the mean number of blocks created by the shards in an epoch. For each shard:

● If the number of blocks confirmed is smaller than M, then M becomes the
ExpectedShardBlock for that shard.

● Otherwise, the ExpectedShardBlock is the number of blocks confirmed by the Beacon
chain.

If a node is slashed, the 1750 staked CHML would be returned to the node operator, who may
choose to re-stake at a later time. Rewards from slashed nodes will be distributed evenly to the
remaining validators in the committee.

chml.network 31

https://chml.network

BLS-based Aggregate Multi-Signatures from Pairing

As the number of validators grows, the total size of all validator signatures also increases,

impacting the block size. To solve this problem, we implement the BLS-based aggregate

multi-signature scheme (AMSP) [Boneh et al., 2018].

When the block proposer proposes a new block, all the validators in the current committee

verify the block and broadcast their signatures. All of these signatures are then aggregated into a

single aggregate signature. Regardless of the number of validators, the size of the aggregate

signature remains only 32 bytes.

Implementation

The implementation is mainly in the Consensus component in the Chameleon architecture.

 Figure 2. The layered Chameleon architecture.

chml.network 32

https://chml.network

The code will be open-source on GitHub with links to specific packages to be provided in the

future.

● Multiview-pBFT: For the consensus algorithm, Chameleon will implement the

Multiview-pBFT (Practical Byzantine Fault Tolerance).

● BLS: For multi-signature aggregation, Chameleon will implement BLS Multi-Signatures.

● RNG: For random number generation, Chameleon will currently use Bitcoin block hash.

Other RNG solutions will be explored in the future.

We are going to propose a new approach to scale privacy on cryptonetworks by applying

sharding on privacy transactions to increase throughput for Chameleon. Chameleon's

throughput will scale out linearly with the number of shards. The more shards we add, the more

transactions it will be able to handle.

Multiview: A New Approach for PBFT Implementation

Problem

Many well-known approaches to implementing the Proof of Stake consensus, such as

Tendermint [1], Hotstuff [2], and PBFT [3], are bi-modal. These protocols typically consist of a

simple normal path where a leader makes proposals and everyone votes. When the normal path

fails, the protocol switches to a much more complicated fall-back mode, typically called a “view

change.” During the view change phase, participants use the same communication process to

reach an agreement on the new view before returning to the normal path of producing blocks.

Chameleon Network’s BFT (Byzantine Fault Tolerance) proposes a simpler approach. Instead of

reaching an agreement on a single view, participants can observe multiple views; the

communication process used during view changes in existing approaches is now leveraged to

propose the new block. Participants may have multiple different views, but when the majority

(more than ⅔ of participants) commits a new block, it indicates that they have achieved

consensus on that view. If they continuously produce blocks based on this view, it becomes

dominant and achieves finality.

chml.network 33

https://chml.network

Preliminaries

● The number of malicious nodes in the network cannot simultaneously equal or exceed ⅓

of the overall nodes in the system during a given window of vulnerability.

● Nodes must be deterministic and begin in the same state.

● The final result ensures that all honest nodes agree on the correct and longest chain.

Protocol

Multiview PBFT details:

The Multiview PBFT protocol used by Chameleon Network has the following phases:

 Figure 3. Multiview PBFT.

PROPOSE PHASE

● The Block Proposer broadcasts the PROPOSE_MESSAGE along with the proposed block

to all validators in the committee.

VOTE PHASE

● Validators broadcast the VOTE_MESSAGE and collect valid VOTE_MESSAGE(s).

● After a bounded time T, if the number of valid votes (|VOTE_MESSAGE(s)|) exceeds ⅔ of

the committee size, the process moves to the Commit Phase.

chml.network 34

https://chml.network

● If the required threshold is not met, the system waits for a new Propose Phase to begin.

COMMIT PHASE

● Validators combine the valid VALIDATOR_SIGNATURE(s) and include it in the block.

● The block is then committed to the chain.

● After committing, the protocol transitions to a new Propose Phase.

In a typical scenario, Chameleon Network’s PBFT protocol behaves similarly to other PBFT

implementations. A node is selected as the proposer and will propose a block; other committee

members vote to decide whether the block should be appended to the chain. Proposers are

chosen in a round-robin fashion based on their ID in the committee.

If a failure occurs in the normal case (for example, due to:

● A Byzantine proposer not proposing a new block or proposing multiple blocks within the

same round, or

● A failure to collect enough votes due to delayed vote messages),

the committee members may see multiple different views. To restore consensus, the following

general rules are applied:

1. Do not propose multiple different blocks at the same block height.

2. Follow the majority group to ensure a common view.

Vote and Propose Rules

To achieve consensus without requiring agreement on a view change, nodes in Chameleon

Network’s committee use the following Vote Rules and Propose Rules:

chml.network 35

https://chml.network

Two vote rules for:

1. Branches with the same height
2. Branches with different heights

chml.network 36

https://chml.network

Two Propose rules for:

1. Branches with the same height
2. Branches with different height

chml.network 37

https://chml.network

Lemma 1. (Finality 1) If two consecutive blocks B_(n) & B_(n+1) on the same branch are
committed in two consecutive time slots, then block B_(n) is finality.

 Figure 4. Example Finality by Lemma 1

chml.network 38

https://chml.network

Proof:

When block n is committed at time slot t, and block (n+1) is proposed at time slot (t+1), this implies

that block (n+1) is proposed for the first time. This also implies that more than 2/3 of the

committee members have received, agreed upon, and voted for it. Therefore, any further

proposed block with height (n+1) will not receive enough votes to be committed, in accordance

with Vote Rule 1. Furthermore, following Vote Rule 2, no branch can grow longer than the one

containing block n.

Lemma 2. (Finality 2)

If two consecutive blocks, B_n and B_(n+1), on the same branch are committed at time slots t and

(t+i), respectively, where B_(n+1) is first proposed at time slot (t+1), and this block is re-proposed

at every time slot from (t+2) to (t+i), then block B_n is considered final.

 Figure 5. Example Finality by Lemma 2

Proof:

Since block n is committed at time t, and block (n+1) is committed at (t+i), where block (n+1) is first

proposed at time slot (t+1), this implies that block (n+1) with time slot (t+1) is the latest one.

Furthermore, more than 2/3 of the committee members have received, agreed upon, and voted

for it. This means that any further proposed block (n+1) will not receive enough votes to be

committed, in accordance with Vote Rule 1. Additionally, during the time slots (t+1), (t+2), ..., (t+i),

no other blocks except for block (n+1) at time slot (t+1) are proposed or committed. Due to Vote

Rule 2, no branch can grow any longer than this one.

chml.network 39

https://chml.network

Finality Theorem

● IF a block at height h is first proposed and committed in the same time slot, THEN it is

finalized.

● IF a block at height h is first proposed in the time slot t, it is committed in time slot (t+n),

for n > 1, and is re-proposed in the consecutive time slots: t+1, t+2, ..., t+n, THEN it is

finalized.

Proof:

● (i) By Proposing Rules 1 and 2, the proposed block at height h is always part of the

longest chain.

● (ii) Following Vote Rule 1, any other block at height h cannot be committed because it will

not be able to collect enough votes. In other words, no multiple branches can be created

at height h.

● (iii) Therefore, in order to be committed, any newly proposed block must append to this

block. No branch can grow any longer than this one.

Thus, (i), (ii), and (iii) imply the Finality Theorem.

 Figure 6. Example finality cases by the finality theorem.

chml.network 40

https://chml.network

ANALYSIS

Observation 1:

If block bn is finalized, then further blocks will be appended to the branch containing bn, and any
other branch b’n becomes obsolete. If a new block is successfully appended to another branch,
say b’n, this implies that more than 2/3 of the participants do not agree that bn is finalized. This
leads to a contradiction.

Theorem 1 (Consistency Proof):

Let ch be the chain:
ch := b₁b₂…b�b�₊₁
and ch’ be the chain:

ch’ := b’₁b’₂…b’�b’�₊₁
where bn₊₁ and b’n₊₁ are finalized, and if bn₊₁ = b’n₊₁, then bi = b’i for all i ∈ [n].

Proof:
Since bn₊₁ and b’n₊₁ are finalized, it means bn and b’n are also finalized. If bn ≠ b’n, this either
violates Observation 1 or the assumption that more than 2/3 of the participants are honest.

Theorem 2 (Liveness Proof):

If an honest participant receives some transactions, those transactions will eventually be included
in all honest participants' finalized chains.

Proof:

● Observation 2: The proposer is selected in a round-robin fashion. Eventually, every

participant will become a proposer. The proposer can then include the transaction in the
proposed blocks.

● Observation 3: If two blocks at the same height are committed, the block proposed
earlier must be committed later. Following Propose Rule 1, nodes will vote for the block
with the smaller round number only. If more than 2/3 of the nodes vote for the first
proposed block, they will not vote for the later block.

Worst-Case Scenario:

Consider the worst-case scenario where two chains grow indefinitely. For this to happen, the
following conditions must be satisfied:

chml.network 41

https://chml.network

1. More than 2/3 of the participants (the "weak participants") do not collect enough votes to
commit any block but may vote for both chains, as shown in Fig 4.

2. The remaining 1/3 of participants (the "power participants") could propose and commit
new blocks.

Proposers in the 1/3 power participants group are divided into two subgroups, with each
subgroup alternately selected to propose blocks on chain 1 and chain 2.

When a participant proposes a block, the next proposer in the round may not receive any
messages from other participants, allowing them to propose a block on the other chain.

Let N be the number of participants. In cases of peak network traffic, assume the probability of
successfully transmitting a message between two participants is 0.5. The probability of a

participant not receiving any messages in a single round is then (0.5^N)^2. This probability
becomes negligible as N grows. Furthermore, the probability of a participant failing to receive any
messages over x rounds is (0.5^N)^(2x), which decreases exponentially as the number of rounds
increases.

Therefore, the above conditions are practically impossible to maintain over multiple rounds,
guaranteeing the liveness property.

 Figure 7. Fork case.

chml.network 42

https://chml.network

Multiview PBFT vs Tendermint [1]

 Figure 8. Tendermint operation in normal cases.

 Figure 9. Multiview PBFT operation in normal cases.

Tendermint Multiview

Aspect Tendermint Multiview

Total messages n+2n^2 n+n^2

Number of phases to commit 3 2

Throughput (T being the delay in
transferring a message)

1/(3T) 1/(2T)

chml.network 43

https://chml.network

Conclusion

The Multiview PBFT approach is simple but offers many advantages over Tendermint:

1. In normal cases, Multiview PBFT increases throughput by 33% compared to Tendermint,

and the total number of exchanged messages is reduced by nearly 50%. Both Tendermint

and Multiview PBFT can achieve instant finality in a single block.

2. Network Peaking: In the Tendermint approach, if more than 1/3 of validator vote

messages arrive late, participants will continuously communicate to switch to a new view,

and no block can be committed. In contrast, Multiview PBFT allows a block to be

committed and appended to the chain despite such issues.

The Multiview PBFT approach has a natural philosophy: it respects the majority group. The

powerful node—capable of committing blocks during bursts of network traffic—can advance the

chain to new heights, even during periods of heavy network traffic.

References

1. Tendermint Documentation
2. Paper on Multiview PBFT
3. MIT's Paper on PBFT

chml.network 44

https://tendermint.com/static/docs/tendermint.pdf
https://arxiv.org/abs/1803.05069
http://pmg.csail.mit.edu/papers/osdi99.pdf
https://chml.network

Chameleon Software Stack: Navigating the Chameleon

Source Code

Chameleon Network Software Stack

It could be a little overwhelming to read the Chameleon Network source code. There will be

more than 1 million lines of code in the Chameleon Network codebase. This topic will provide an

overview of the Chameleon Network architecture and a guide to navigating the Chameleon

Network source code.

Network Architecture

The Chameleon Network software stack will be designed in five layers:

1. P2P Networking layer: This will be implemented on top of libp2p [Benet and Dias, 2019]

to handle peer-to-peer communications such as finding peers, connecting to them,

sending and receiving transactions, blocks, and messages. In the future, we plan to

introduce changes to further enhance privacy by masking IPs, making the network more

secure and private.

2. Blockchain layer (Data layer): This will implement data storage for shards and the

beacon, and ensure data synchronization among nodes.

3. Core layer: This will implement the consensus mechanism, privacy, and bridges to other

cryptonetworks.

4. Developer Tools layer: This will provide a few different options for developers to work

with Chameleon Network, including an SDK, RPC, and Websocket.

5. Application layer: This will ship a reference mobile wallet, some reference privacy apps,

and a reference hardware full node.

Additionally, several infrastructure tools will be built to support network monitoring, visualization,

and deployment.

chml.network 45

https://chml.network

 Figure 1. The layered Chameleon architecture.

chml.network 46

https://chml.network

Navigating the Chameleon Network Source Code

Chameleon Network will be implemented in Go for a balance of portability, performance, and the
development efficiency it will bring to a large-scale, open-source project like Chameleon
Network.

P2P Networking

● Peer Management: Peer management will handle peer-to-peer communications such as
finding peers, connecting to them, sending and receiving transactions, blocks, and
messages.

● NetSync: NetSync will be a mediator that receives incoming messages, parses them, and
routes the messages to the appropriate components.

● Highway: Highway will be a new network topology design that speeds up P2P
communications. It will be under development and merged into the main codebase in the
future.

Blockchain

● Shards: Shards will be subchains. A subchain will be a Proof-of-Stake blockchain with its
own committee of N nodes. A shard’s job will be to produce new blocks via a Practical
Byzantine Fault Tolerance (pBFT) consensus algorithm.

● Beacon: Beacon will also be a subchain. A beacon’s job will be to coordinate the shards
and maintain the global state of the network.

● Synker: Synker will ensure that the node is up to date among its peers and will also
broadcast the node's status to its peers.

● Mempool: Mempool (memory pool) will be a collection of transactions and blocks that
have been verified but are not yet confirmed.

● Wallet: The wallet will hold all your Chameleon Network keys. Users will be able to use it
to send and receive Chameleon Network tokens.

● Database: Chameleon Network will use LevelDB to store block data.

Core

Consensus

● pBFT: Chameleon Network will implement pBFT (Practical Byzantine Fault Tolerance) as
the consensus algorithm.

● BLS: For multi-signature aggregation, Chameleon Network will implement BLS
Multi-Signatures.

● RNG: For random number generation, Chameleon Network will use Bitcoin block hash
initially, but will explore other RNG solutions in the future.

chml.network 47

https://chml.network

Privacy

● RingCT: Chameleon Network will implement RingCT (Ring Confidential Transaction) with
ring signatures, stealth addresses, and confidential transactions for privacy.

● Confidential Asset: RingCT will hide the amount of the transaction, but it won’t hide the
type of asset being sent. Confidential Asset will solve that.

● Mobile ZKP: Chameleon Network will implement Zero-Knowledge Proofs (ZKP)
Generation on mobile. Private transactions will be able to be sent on any regular phone in
under 15 seconds.

Bridges

● Ethereum: Chameleon Network will implement a trustless two-way bridge between
Chameleon Network and Ethereum, allowing users to send and receive ETH & ERC20
tokens privately.

● Bitcoin: Chameleon Network will work on a trustless two-way bridge between Chameleon
Network and Bitcoin, allowing users to send and receive BTC privately.

● Cosmos: Chameleon Network will explore Cosmos and hopes to build a trustless two-way
bridge between Chameleon Network and Cosmos.

Developer Tools

● RPC: RPC will allow developers to interact with Chameleon Network via their own
programs.

● WebSocket: WebSocket will provide another way for developers to interact with
Chameleon Network via their own programs.

● SDK: Chameleon Network will be working on Developer SDKs to make it easier to build
on top of Chameleon Network.

Apps

● Mobile Apps: Developers will be able to easily build mobile apps on top of Chameleon
Network once the SDK is available. An example could be a mobile wallet.

● Web Apps: Developers will be able to build web apps on top of Chameleon Network once
the SDK is available. Examples could include a web wallet or a desktop network monitor.

● Hardware Devices: Developers will also be able to build hardware on top of Chameleon
Network once the SDK is available. An example could be a node device.

● CHML-CLI: A command-line interface (CLI) tool will be available for interacting with
Chameleon Network. This will allow developers to interact with the network and manage
nodes from the terminal.

chml.network 48

https://chml.network

Chameleon Performance
We will evaluate the performance of Chameleon Network based on its real workload on the

mainnet, as well as on simulated workloads.

In evaluating the performance of the Chameleon Network, we will focus on the privacy

transaction throughput, more specifically the metric of transactions per second (TPS). Note that

Chameleon Network will use a UTXO-based ledger. In most cases, fewer than 32 existing UTXOs

will be used as inputs, and 2 new UTXOs will be produced as outputs.

 Figure 2. Transactions per second based on the number of inputs per transaction on a shard .

In Figure 2, we will illustrate the TPS metric for one shard and two fixed outputs. In the best case,

the network will achieve 6.5 TPS with only one input, and in the worst case, approximately 2.5

TPS with 32 inputs. In the future, we will introduce a batch verification feature to verify

transactions in a batch, which will significantly enhance transaction throughput. This feature is

expected to improve transaction throughput by twofold. Specifically, Chameleon Network will

achieve 12.5 TPS and 5 TPS for one input and 32 inputs, respectively.

chml.network 49

https://chml.network

 Figure 3. Transactions per second based on the number of shards .

 Figure 4. TPS comparison among Chameleon, Monero, Zcash, Grin, and Beam .

chml.network 50

https://chml.network

Transaction throughput will scale linearly with the number of shards. Initially, with 8 shards active,
Chameleon Network will handle 90–100 TPS in the most common case (two inputs and two
outputs per transaction). We are developing a new network topology to scale the network to 64
shards. With this enhancement, Chameleon Network will achieve 800 TPS, which will be
significantly higher than other privacy blockchains. For example, Monero achieves approximately
4 TPS, Zcash 6 TPS, Grin 10 TPS, and Beam 17 TPS. Details will be shown in Figures 2 and 3.

chml.network 51

https://chml.network

Network Incentive: CHML Mining & Distribution

CHML is the native token of the Chameleon Network, with a fixed supply of 100 million tokens. It

will play a pivotal role in the ecosystem by enabling staking, governance, transaction fee

payments, and liquidity mining.

Key Features of CHML

1. Fixed Supply: Total supply will be capped at 100,000,000 CHML, ensuring scarcity and

value preservation.

2. Multiple Use Cases:

○ Staking: Validators (V-Nodes/P-Nodes) will stake CHML to secure the network and

earn rewards.

○ Transaction Fees: CHML will be used to pay network fees for transactions and

shielding/unshielding.

○ Governance: Token holders will participate in decision-making by voting on

network proposals.

○ Liquidity Mining: CHML will incentivize liquidity providers on the privacy

decentralized exchange (pDEX).

Token Allocation

The total supply of 100 million CHML tokens will be allocated as follows:

1. Community Airdrop (5%)

Allocation: 5,000,000 CHML

● 4% (4,000,000 CHML): Allocated to Privacy token (PRV) holders from a previous privacy

blockchain project. A 1:1 swap mechanism will allow eligible PRV holders to claim CHML

via a vesting schedule.

● 1% (1,000,000 CHML): Reserved for newly acquired early community supporters who

actively contribute to the ecosystem.

chml.network 52

https://chml.network

Airdrop Vesting Schedule:

● 15% unlock at the conclusion of presale rounds.

● 25% unlock at testnet launch.

● 60% unlock through linear vesting over six months post-mainnet launch.

2. Presale (20%)

Allocation: 20,000,000 CHML

Purpose: Raise funds to support development, marketing, operations, and infrastructure for the

Chameleon Network.

● Round 1: 12,000,000 CHML at $0.45 per token.

● Round 2: 8,000,000 CHML at $0.60 per token.

Vesting Schedule:

● 15% tokens unlock at creation of an interim pool at Uniswap.

● 25% token unlock at testnet launch.

● 60% tokens unlock in linear vesting over 6 months post-mainnet.

3. Reward Pool (65%)

Allocation: 65,000,000 CHML

Purpose: Incentivize participation through staking rewards and liquidity mining.

Breakdown:

● Validator Rewards: 45,500,000 CHML (70% of the Reward Pool).

● Liquidity Provider Rewards: 19,500,000 CHML (30% of the Reward Pool).

Emission Schedule: Gradual rewards decline over 20 years, with higher emissions in the early

years to encourage participation.

chml.network 53

https://chml.network

4. Initial Liquidity Pool (2%)

Allocation: 2,000,000 CHML

● 2,000,000 CHML paired with 2,000,000 USDT (raised during the presale) to create a

liquidity pool on Uniswap.

Purpose:

● Enable early trading for CHML tokens to foster confidence and flexibility during

development.

● Allow new investors to join the ecosystem at the initial listing price.

Breakdown:

● Liquidity paired with USDT raised during the presale to establish a trading pool on

Uniswap.

● Liquidity will remain locked until the mainnet launch to ensure stability and prevent

manipulation.

● Post-mainnet, all liquidity will migrate to the Chameleon pDEX, enabling private trading

and staking opportunities exclusive to the pDEX.

5. Staking Infrastructure (5%)

Allocation: 5,000,000 CHML

● Reserved to support the fixed/highway node infrastructure during Chameleon’s early

stages.

● Tokens will unlock progressively based on network decentralization milestones and

community governance approval.

Purpose:

● Provide operational support for the Chameleon network's fixed nodes during its initial

phases.

● Ensure a smooth transition to community-managed Validator Nodes (V-Nodes) and

P-Nodes as the network moves toward 100% decentralization.

chml.network 54

https://chml.network

Vesting Schedule:

● Tokens will remain locked until the network reduces reliance on fixed nodes and

demonstrates significant progress toward decentralization.

● The core team will control the allocation and propose token usage based on project

milestones and the community’s approval.

6. Ecosystem Development (3%)

Allocation: 3,000,000 CHML

● Supports community-driven development and incentivizes open-source collaboration

through a milestone-based reward system governed by DAO proposals.

Purpose:

● Community Developer Recruitment:

○ Tokens allocated as rewards for community developers contributing to

Chameleon’s technical ecosystem.

○ Rewards are milestone-based, ensuring compensation for achieving predefined

technical deliverables.

○ Decisions on reward allocations will be governed by DAO voting for transparency

and fairness.

Speeding Up Core Development:

● Engages talented developers worldwide to accelerate feature releases and ensure

high-quality technical contributions.

Supporting Open-Source Collaboration:

● Encourages developers to build tools, libraries, and applications that integrate with or

enhance the Chameleon ecosystem.

7. Reward Emission Schedule

Total Reward Pool: 65,000,000 CHML

Total Reward Pool (65M) emission schedule

chml.network 55

https://chml.network

chml.network 56

Year
Percentage of Total

Rewards CHML Distributed

1 11.38% 7.40M

2 10.24% 6.66M

3 9.22% 6.00M

4 8.29% 5.39M

5 7.46% 4.84M

6 6.71% 4.36M

7 6.04% 3.93M

8 5.43% 3.53M

9 4.89% 3.18M

10 4.40% 2.86M

11 3.96% 2.57M

12 3.56% 2.31M

13 3.21% 2.09M

14 2.89% 1.87M

15 2.60% 1.69M

16 2.34% 1.52M

17 2.10% 1.37M

18 1.89% 1.23M

19 1.70% 1.10M

20 1.53% 1.00M

Total 100% 65M CHML

https://chml.network

The Reward Pool of 65M is further split into

● Validator Rewards: 45.5M CHML (70% of Rewards Pool).
● Liquidity Provider Rewards: 19.5M CHML (30% of Rewards Pool)

Validator Rewards 45.5M CHML (70% of Rewards Pool).

Total Allocation: 45.5M CHML

● Emission is structured to gradually decrease over 20 years, incentivizing long-term
participation while ensuring sustainability.

 Validator Rewards Emission Schedule

chml.network 57

Year Percentage of Validator Rewards CHML Distributed

1 11.38% 5.18M

2 10.24% 4.66M

3 9.22% 4.20M

4 8.29% 3.77M

5 7.46% 3.39M

https://chml.network

chml.network 58

6 6.71% 3.05M

7 6.04% 2.75M

8 5.43% 2.47M

9 4.89% 2.23M

10 4.40% 2.00M

11 3.96% 1.80M

12 3.56% 1.62M

13 3.21% 1.46M

14 2.89% 1.31M

15 2.60% 1.18M

16 2.34% 1.06M

17 2.10% 0.96M

18 1.89% 0.86M

19 1.70% 0.77M

20 1.53% 0.70M

Total 100% 45.5M CHML

https://chml.network

Liquidity Provider Rewards 19.5M CHML (30% of Rewards Pool)

Total Allocation: 19.5M CHML

● Emission follows a similar declining pattern to Validator Rewards over 20 years.

Liquidity Pool Rewards Emission schedule

chml.network 59

Year Percentage of Liquidity Pool Rewards CHML Distributed

1 11.38% 2.22M

2 10.24% 2.00M

3 9.22% 1.80M

4 8.29% 1.62M

5 7.46% 1.45M

6 6.71% 1.31M

7 6.04% 1.18M

8 5.43% 1.06M

9 4.89% 0.95M

10 4.40% 0.86M

11 3.96% 0.77M

12 3.56% 0.69M

13 3.21% 0.63M

14 2.89% 0.56M

15 2.60% 0.51M

16 2.34% 0.46M

17 2.10% 0.41M

18 1.89% 0.37M

19 1.70% 0.33M

20 1.53% 0.30M

Total 100% 19.5M CHML

https://chml.network

Token System
There are 3 types of tokens:

● CHML. will be Chameleon Network’s native coin — a work token. Users will stake CHML
to become validators. Validators will earn block rewards in CHML and transaction fees in
various cryptoassets (i.e. pBTC, pETH, etc.). This model ensures that only those truly
invested in the growth of the network participate, avoiding speculative activity. As
demand for private transactions grows, validators will earn more revenue, leading to an
increase in the value of CHML.

● Bridged Privacy Coins. Users will be able to convert cryptocurrencies (or “public coins”)
on other blockchains (i.e. BTC, ETH, USDT) to privacy coins on Chameleon Network (i.e.
pBTC, pETH, pDAI). These privacy coins will maintain a 1:1 peg and be fully confidential. As
a result, users can store, send, and receive any cryptoassets with complete privacy.
Private coins will also be usable for transaction fees.

● Issue-Created Privacy Coins. Users will have the ability to issue their own privacy coins
on Chameleon Network, providing further flexibility and privacy options within the
ecosystem.

chml.network 60

https://chml.network

Transaction Fees

Users will be able to pay transaction fees in their cryptocurrency of choice (CHML, pBTC, pETH,
pDAI, etc.).

User-Created Privacy Coins

Chameleon Network will offer users and developers an easy way to create their own privacy
coins. At the time of writing, numerous user-created privacy coins will have been issued within
the Chameleon ecosystem.

We believe that in the near future, tokens will increasingly represent everyday assets, including
but not limited to stocks, fiat currencies, gold, real estate, and other forms of ownership. We also
strongly believe that very few people will willingly disclose their token holdings to the entire
world.

PRIVACY COINS

Description # of TXs

Hedus (HEDUS) Rewards for student behavior

Tipcoin (TIP) A privacy coin for tipping on social media

PERKS (PERKS) Tradable coupons redeemable for fiat by merchants

 Table 1. Some privacy coins created by the community.

chml.network 61

https://chml.network

Use Cases: Privacy Stablecoins, Privacy DEX, Confidential

Crypto Payroll, and more

Privacy Stablecoins as P2P Digital Cash

The lack of privacy remains a significant obstacle for stablecoins to function effectively as digital

cash. With current blockchain systems like Ethereum, it is too easy to analyze the exact amount of

money individuals and businesses hold, as well as how they spend it, based on the public ledger.
Chameleon Network enables the creation of privacy stablecoins, such as pDAI or pUSDT. These

privacy stablecoins will offer both stability and privacy, much like physical cash. They will be ideal

for cross-border business payments and offer a secure, familiar way for users to store personal

savings.

Anonymous Cross-Chain Decentralized Exchanges

Existing decentralized exchanges (DEX) are pseudonymous, meaning they provide limited

privacy. Chameleon Network’s pDEX (privacy decentralized exchange) will be a new type of

exchange that is not only decentralized but also fully privacy-protecting.
Thanks to Chameleon’s interoperability with various cryptonetworks, the pDEX will facilitate

anonymous cross-chain trading—for instance, trading pBTC for pDAI. In the first two months since

its launch, Chameleon’s pDEX is expected to facilitate nearly 16,000 anonymous trades across

150 pairs.

Buy & Sell Crypto Anonymously

Chameleon Network will provide a way for users to buy and sell crypto anonymously. On

platforms like LocalBitcoins or through Bitcoin ATMs, users will be able to perform transactions

with privacy. The seller will simply need to make a deposit to the buyer’s Chameleon wallet

address. Although the seller will not need a Chameleon wallet, the buyer will enjoy full privacy.

Similarly, sellers will be able to sell crypto anonymously, making transfers from their Chameleon

wallet to the buyer’s address, who may or may not need a Chameleon wallet if they don’t mind

exposure.

chml.network 62

https://chml.network

Pay Anonymously Online
Many distributed teams and companies are turning to crypto payroll to cut down on international

transfer fees, save time, and, in some cases, pay employees in a more desirable currency.

However, the major downside of traditional crypto payroll is that salary and payment details are

publicly visible to anyone who examines the blockchain.
With Chameleon’s anonymous payroll system, users will be able to make payments in

privacy-preserving stablecoins like privacy USDT, privacy BTC, or another chosen privacy coin.

This system will eliminate the issue of public exposure while still retaining all the benefits of

digital payments.

chml.network 63

https://chml.network

Highway: An Upgrade to Chameleon’s Network Topology

Chameleon highway

Chameleon Network, will use a pBFT-based Proof-of-Stake consensus protocol combined with

state sharding to maintain high transactions per second (TPS) while preserving the security of
the network. However, during testing, two key challenges were identified that could hinder future

scalability:

1. Physical Node Connectivity: A significant portion of Chameleon validators are anticipated

to run on Chameleon Physical Node devices, typically set up in home environments

behind NAT (Network Address Translation) or firewalls. This prevents these devices from

connecting to each other, especially when all validators in a shard are on such devices,

which would leave them unable to communicate effectively.

2. Excessive Connection Management: Validators’ clients need to manage too many

connections to other validators within the same shard, across other shards, and to the

beacon chain. Maintaining this level of data availability and preventing

message-filtering-attacks require broadcasting messages to all nodes, consuming

significant bandwidth and processing time.

To resolve these problems, Chameleon Network introduces the Highway system—highly

dedicated nodes that function as proxies to forward messages efficiently across the network.

Highway Design Principles

The Highway design embraces four key principles:

1. Highly Available: Highways are always available to serve node requests, prioritizing

availability over consistency in the event of network partitioning.

2. Incremental Scalability: Highways can be scaled one by one based on the network's

needs, ensuring flexibility and efficient resource management.

3. Heterogeneity: Each highway’s workload is distributed based on its capabilities, ensuring

that more powerful highways handle heavier loads.

4. Symmetry: Every highway performs the same functions, creating an equal and balanced

system for easier provisioning and maintenance in the long term.

chml.network 64

https://chml.network

New network topology

The figure above gives a simplified view of Chameleon’s network topology. Highways manage
each shard and beacon. Instead of connecting directly, each node connects to a highway for the
shard it needs. Highways are interconnected (using mesh/ring or fully-connected topology) to
ensure message flow. Each highway must have a static public IP to allow node connections.

When a node broadcasts data, it sends it to the highway. The highway then forwards the data to
other highways and connected peers. This reduces redundant data and cuts down on
processing. Latency is also minimized, as messages pass through at most 3 hops.

This setup improves network efficiency and performance.

chml.network 65

https://chml.network

API

Chameleon Network’s highway code will be open-source and serve as a reference

implementation. The goal is for developers to contribute or implement their own versions in their

preferred programming language.

A highway node provides three main functions for the Chameleon client:

1. Broadcast and Listen for New Blocks: Using a Publish/Subscribe model to share new

blocks as they are generated.

2. Request and Provide Old Blocks: Using the gRPC framework for requesting and

providing historical data.

3. Broadcast and Listen to the Current State of the Network: To keep the network updated

and in sync.

To put it more concretely, a highway satisfies this interface:

type Highway interface {

 BroadcastBlock(blockHeight int, blockData []byte, shardID int) error

 ListenToBlock(shardID int) (channel []byte, error)

 RequestBlock(blockHeight int, shardID int) ([]byte, error)

 PublishState(pubkey []byte, state []byte, shardID int) error

}

chml.network 66

https://chml.network

Scalability of the Highway System

Chameleon aims to maintain a network with 64 shards, each supported by 256 validators. For

the purpose of this calculation, we assume a blocktime of 40 seconds/block and a maximum

block size of 2MB.

The system needs to handle three types of messages:

1. pBFT messages

2. Block broadcasting messages

3. Cross-shard messages

Bandwidth Calculation

1. pBFT Messages: The required bandwidth for each highway to handle pBFT messages is

calculated based on the number of validators N and the number of validators supported

by each highway K. The formula for this type is 12.8×K MB/s.

2. Block Broadcasting: Assuming each validator has 10 substitutes, the bandwidth required

for block broadcasting is 0.5×K MB/s.

3. Cross-shard Messages: Each highway receives blocks from 63 other shards (and the

beacon), which contributes a bandwidth requirement of 3.2×K MB/s.

Thus, for a highway with K=32K, the total bandwidth requirement is approximately 528 MB/s to

maintain the network at full load.

Memory Requirements

To ensure low latency, highways must store frequently accessed blocks in memory. The memory

required to store M epochs of blocks is M×700 MBMB. Since validators are generally up-to-date

with the latest blocks, the memory requirement is manageable.

Design Choices

1. Availability: Highways must be crash-tolerant, which is achieved through replication.

Each shard is supported by at least two highways, preferably located in different data

centers. In the event of a network partition, highways act independently to serve client

requests.

chml.network 67

https://chml.network

2. Scalability and Stability: Consistent hashing is used to assign highways to nodes,

ensuring that highways can be added or removed without disrupting the network. This

method also ensures the topology remains stable, even when nodes frequently go offline

and come online.

3. Functionality:

○ For block publishing and subscribing, Chameleon uses the modular libp2p

network stack for compatibility with older versions and other blockchains.

○ For requesting old blocks, instead of broadcasting requests, highways directly

contact a suitable peer using gRPC for high-performance communication.

○ The network membership is maintained via a publish/subscribe pattern to gossip

about highway additions and removals.

Challenges and Ongoing Research

1. Security: All messages are cryptographically signed by validators. Highways are mere

messengers and do not interfere with the consensus process.

2. Availability of Highways: If a significant number of highways go down, block generation

could slow until enough highways are available to cover more than ⅔ of validators.

3. Centralization: Currently, highways are run by the Core Development Team, but the goal

is to enable others to run and connect highways in the future.

chml.network 68

https://chml.network

Privacy Mode for dApps on Ethereum

pEthereum Specifications

Building privacy-protecting decentralized applications, smart contracts, and crypto-assets.

What is pEthereum?

The Ethereum smart contract platform offers an entirely new programming paradigm. It enables

developers worldwide to collaboratively build a new type of global financial infrastructure without

relying on central authorities. However, privacy concerns often discourage broader adoption

beyond the crypto niche. Everyday users may hesitate to disclose how much DAI they are saving,

the profitability of their Uniswap trades, or the frequency of their borrowing on Compound.

What is needed is Privacy Mode for Ethereum smart contracts.

pEthereum is an extension of Ethereum that enables privacy-protecting Ethereum transactions

and decentralized applications like Uniswap and Compound. Transactions are encrypted using

zero-knowledge proofs, allowing users to maintain their privacy.

With pEthereum, developers can program smart contracts that are not just decentralized but also

privacy-protecting.

Core Concepts

● Cross-Chain Instruction: Chameleon communicates with Ethereum via instructions. These

instructions are high-level, cross-chain opcodes specifying operations to be performed by

the other chain. There are five instructions: SHIELD, UNSHIELD, DEPLOY, UNDEPLOY,

and EXECUTE.

● Bridge: The bridge is a two-way trustless bridge between Chameleon and Ethereum,

responsible for forwarding instructions between the two chains. It consists of multiple

relayers. Relayers cannot forge or corrupt instruction content because each instruction is

cryptographically signed by users and verified on both ends of the bridge.

● Broker: The broker is a smart contract on Ethereum that receives instructions from

Chameleon, verifies them, and redirects them to appropriate dApps on Ethereum.

● dApp: A decentralized application (or "dApp") lives on Ethereum. It consists of one or

more smart contracts that execute exactly as programmed.

chml.network 69

https://chml.network

● pApp: A privacy-protecting decentralized application (or "pApp") lives on Chameleon. It is

the privacy-protecting counterpart of an existing dApp on Ethereum.

Cross-Chain Instructions

SHIELD instruction

Shielding is the process of converting a public ERC20 token into its privacy counterpart of the

same value. For example, DAI can be shielded to obtain the privacy coin pDAI. pDAI holds the

same value as DAI, ensuring that 1 pDAI can always be redeemed for 1 DAI and vice versa. Once

shielded, privacy coin transactions are confidential and untraceable.

Following is an overview of the SHIELD instruction flow:

chml.network 70

https://chml.network

1. A user deposits some amount of an ERC20 token into the Broker smart contract. Once

the transaction is confirmed on Ethereum, the user obtains a deposit proof.

2. The user sends a SHIELD instruction to Chameleon, along with the deposit proof, via the

bridge.

3. Chameleon validators parse the SHIELD instruction to retrieve the deposit proof, which is

verified using Ethereum Simplified Payment Verification (SPV). They also extract the

minting parameters, which are then used to mint the privacy coin counterpart of the same

value.

UNSHIELD Instruction

Unshielding is the reverse process of shielding: converting privacy coins back into public ERC20

tokens.

Following is an overview of the UNSHIELD instruction flow:

chml.network 71

https://chml.network

1. A user initiates an unshielding transaction on Chameleon, specifying the privacy coins

they want to unshield and the amount. Once the transaction is confirmed on Chameleon,

the user obtains a burn proof.

2. The user sends an UNSHIELD instruction to the Broker smart contract, along with the burn

proof, via the bridge.

3. The Broker smart contract parses the UNSHIELD instruction to retrieve the burn proof,

which is verified by counting the number of signatures from Chameleon validators, as well

as the burning parameters, which are used to transfer the public ERC20 tokens back to

the user.

DEPLOY Instruction

Once shielded, privacy coin transactions are confidential and untraceable. However, they are

limited to basic features like sending and receiving. DEPLOY, EXECUTE, and UNDEPLOY are

instructions that enable users to use their privacy coins in their favorite Ethereum dApps. For

example, users can trade pETH for pDAI on Uniswap or collateralize pETH to borrow pUSDC on

Compound.

Deploying is the process of moving funds from Chameleon to Ethereum so that users can spend

them in Ethereum dApps.

Following is an overview of the DEPLOY instruction flow:

chml.network 72

https://chml.network

1. A user confidentially initiates a DEPLOY transaction on Chameleon, specifying the privacy

coins they want to deploy and the amount. Once the transaction is confirmed on

Chameleon, the user obtains a deploy proof, which functions similarly to a burn proof.

2. The user sends a DEPLOY instruction to the Broker smart contract, along with the deploy

proof, via the bridge.

3. The Broker smart contract parses the DEPLOY instruction to retrieve the deploy proof,

which is verified by counting the number of signatures from Chameleon validators, as

well as the deploy parameters, which are used to update the user’s deployed balances.

EXECUTE instruction

Executing involves anonymously running a function call of an Ethereum smart contract. For

example, performing operations like swap(pETH, pDAI) on Uniswap or borrow(pUSDC) on

Compound while maintaining user anonymity.

chml.network 73

https://chml.network

The following is an overview of the EXECUTE instruction flow:

1. A user confidentially initiates an EXECUTE transaction on Chameleon, specifying the

desired function call and parameters. Once the transaction is confirmed on Chameleon,

the user obtains an execute proof.

2. The user sends an EXECUTE instruction to the Broker smart contract, along with the

execute proof, via the bridge.

3. The Broker smart contract parses the EXECUTE instruction to retrieve the execute proof,

which is verified by counting the number of signatures from Chameleon validators. The

verified proof is then used to call the specified Ethereum smart contract function on behalf

of the user.

An EXECUTE instruction contains the following parameters:

chml.network 74

https://chml.network

1. Input Token: The token the user intends to spend in this transaction.

2. Input Amount: The amount of the input token to spend in this transaction, which must not

exceed the user’s balance in the Broker smart contract.

3. Output Token: The token returned from the execution, if applicable.

4. dApp Contract Address: The address of the target decentralized application (dApp) on

Ethereum.

5. Encoded ABI: The encoded Application Binary Interface (ABI) of the target function in the

dApp contract.

6. Timestamp: The timestamp of the transaction for reference and verification purposes.

7. Signature: A cryptographic signature on the combined data of all the above parameters,

ensuring the integrity and authenticity of the instruction.

UNDEPLOY instruction

Undeploying is the reverse process of deploying: moving funds from Ethereum back to

Chameleon.

Following is an overview of the UNDEPLOY instruction flow:

chml.network 75

https://chml.network

1. A user initiates an undeploy transaction on Ethereum, specifying the privacy coins they

want to undeploy and the amount.

2. The bridge forwards the UNDEPLOY instruction to the Broker smart contract.

3. The Broker smart contract parses the UNDEPLOY instruction, verifies the user’s signature,

and subtracts the user’s currently deployed balances. Once the transaction is confirmed

on Ethereum, the user receives an undeploy proof.

4. The bridge forwards an ACK instruction to Chameleon, along with the undeploy proof.

5. Chameleon validators parse the ACK instruction to extract the undeploy proof, which is

verified using Ethereum Simplified Payment Verification (SPV), as well as the undeploy

parameters. These are used to mint the privacy coin counterpart and send it to the user.

pEthereum Developer Resources

The pEthereum SDK enables developers to build their own pApps on top of their existing dApps.

chml.network 76

https://chml.network

The pEthereum Developer Guide provides instructions for creating privacy-protecting

decentralized applications—both from scratch and by integrating privacy features into existing

dApps.

Source Code

All Chameleon development is public. The code will be open-source on GitHub. Progress is

shared through weekly updates on chml.network .

Conclusion

Crypto’s lack of privacy poses a significant threat to the growth of our new economy and slows

the adoption of innovative financial products. We believe privacy is the missing piece for many

everyday users.

We have proposed a method to build privacy-protecting decentralized applications on top of

Ethereum. Rebuilding an EVM from scratch is unnecessary; Ethereum already boasts a vast

developer and user base. By leveraging Ethereum’s robust ecosystem, we can focus on

addressing the privacy challenge. Developers can continue building dApps on Ethereum using

Solidity while utilizing the pEthereum SDK to integrate Chameleon into their dApps.

chml.network 77

https://chml.network

Future Work: Smart Contracts, Confidential Assets,

Confidential IP, and More

Chameleon is continuously evolving. Ongoing research and development will be driven by the

Core Development Team and the Chameleon community.

Chameleon for Smart Contracts

Currently, thousands of developers around the world are writing smart contracts to build

decentralized applications (dApps). Privacy concerns, however, can be a barrier to adoption

beyond the crypto niche. Traditional investors may be hesitant to reveal how much they trade on

a trading dApp like Uniswap or how often they invest or borrow on a lending dApp like

Compound.

What’s needed is Chameleon for smart contracts. While there are other teams working on

privacy for smart contracts (such as Oasis and RenVM [Cheng et al., 2019; Ren, 2019]), Chameleon

believes in a different approach.

We’re exploring a way to simply unshield the input when making a smart contract function call,

then shield the output (or “returned value”) from it. The smart contract runs as usual on Ethereum.

This approach avoids the need to build a new Ethereum Virtual Machine (EVM) from scratch.

Instead, we reuse the existing Ethereum EVM and thousands of existing Ethereum dApps,

focusing on solving the privacy issue for dApp users. Developers can continue building dApps on

Ethereum as they normally would, while also giving users the option to access these dApps in

Chameleon.

chml.network 78

https://chml.network

 Figure 1. Chameleon for smart contracts

Highway: Scaling Chameleon to 16,384 Validators

Despite its many advantages, pBFT consensus algorithms face high communication costs. As the

number of validators grows, Chameleon needs a more efficient way to broadcast messages.

To address this, we’re developing a new network topology called Highway, aimed at scaling

Chameleon to 16,384 validators (64 shards x 256 validators per shard). Highway introduces

specialized nodes responsible for receiving and forwarding messages within the Chameleon

network. This new approach is designed to solve two key problems:

1. Efficient Messaging: Highway nodes serve as a fast and efficient channel for messages

to be transmitted with minimal latency.

2. Bypassing Network Barriers: For Chameleon validators operating behind NATs and

firewalls, Highway nodes are configured with public IP addresses and stable network

connections, ensuring messages can still be forwarded effectively even when direct

connections are hindered.

It’s important to note that Highway nodes cannot alter or forge any content in the messages, as

every message on the network is cryptographically signed. The sole purpose of Highway nodes

is to ensure that messages reach their destination as quickly as possible.

chml.network 79

https://chml.network

 Figure 2. Highway network topology

Confidential Assets: Unknown Asset Types

Chameleon will implement ring signatures, stealth addresses, and confidential
transactions to shield senders, receivers, and transacted amounts. Unlike Zcash and
Monero, Chameleon faces a unique problem as a platform for privacy coins: there are
multiple privacy coins on Chameleon. We’re working on adding Confidential Assets to
Chameleon by also shielding asset types.

 Figure 3. Shielded asset types

chml.network 80

https://chml.network

Confidential IP on Chameleon Network

All senders and receivers are shielded, as are the transacted amounts. Soon, asset types will
also be shielded. Currently, however, IP addresses are exposed when transactions are
initiated. While IP addresses are not stored on Chameleon public ledger, it does leave a user
open to network monitoring and analysis. This is a hard attack vector to pull off, but work is in
progress to hide IP addresses and further improve the privacy of the Chameleon network
[Bojja Venkatakrishnan et al., 2017; Kovri, 2018].

Privacy Goals for Chameleon

1. Improve Bulletproofs Verification Time
Bulletproofs offer an efficient method for confidential transactions. Chameleon aims to
improve their implementation to speed up verification and enhance overall transaction
throughput.
Reference: B. Bünz, J. Bootle, D. Boneh, et al. "Bulletproofs: Short Proofs for Confidential
Transactions and More." Blockchain Protocol Analysis and Security Engineering, 2018.
Link to paper.

2. Confidential Assets Based on Bulletproofs
Chameleon is working on further supporting confidential assets using Bulletproofs,
ensuring privacy for different types of digital assets on the network.
Reference:

○ TariLabs on Confidential Assets. Link.

○ Cathie Yun. Building on Bulletproofs. Link.

Availability

Goal: Increase robustness and availability of the chain

1. Robustness and Availability

Chameleon aims to ensure that the network remains highly available even under variable

validator numbers or high network traffic conditions. We are studying various designs to

maintain optimal availability.

chml.network 81

http://web.stanford.edu/~buenz/pubs/bulletproofs.pdf
http://web.stanford.edu/~buenz/pubs/bulletproofs.pdf
https://tlu.tarilabs.com/digital-assets/confidential-assets/MainReport.html
https://cathieyun.medium.com/building-on-bulletproofs-2faa58af0ba8
https://chml.network

Reference: Christian Badertscher, et al. "Ouroboros Genesis: Composable proof-of-stake

blockchains with dynamic availability." CCS 2018. Link.

2. Dynamic Sharding

Chameleon plans to implement dynamic sharding, adjusting the number of shards based

on the network's needs. This would enable the network to scale up or down depending

on the requirements.

Reference: Alex Skidanov, Illia Polosukhin, "Nightshade: Near protocol sharding design."

Link.

3. Random Number Generation

The random number must have the following properties:

○ Unpredictable: No one should be able to predict the random number before it’s

generated.

○ Unbiased: The process of generating the random number should not be made

biased by the participants.

○ Verifiable: The validity of the generated random number should be verifiable.

○ Scalable: The algorithm for randomness generation should scale to a large

number of participants.

To achieve randomness, Chameleon currently uses the block hash of the Bitcoin chain. However,

we are studying alternative approaches, such as Verifiable Random Functions (VRF) and

Verifiable Delay Functions (VDF), to independently generate an unbiased, unpredictable

random number for the network.

chml.network 82

https://dl.acm.org/doi/pdf/10.1145/3243734.3243848
https://nearprotocol.com/downloads/Nightshade.pdf
https://pages.near.org/downloads/Nightshade.pdf
https://chml.network

Reference:

○ E. Syta, P. Jovanovic, E. Kokoris-Kogias, N. Gailly, L. Gasser, I. Khoffi, M. J. Fischer,

and B. Ford. "Scalable Bias-Resistant Distributed Randomness." In 38th IEEE

Symposium on Security and Privacy, May 2017. Link.

○ Dan Boneh, Joseph Bonneau, Benedikt Bünz, and Ben Fisch. "Verifiable Delay

Functions." In CRYPTO 2018, 2018. Link.

Security

Goal: Strengthen the security of the chain

1. Staking & slashing mechanism

Currently, Chameleon fixes the required staking amount. We are studying how to make the
mechanism dynamic, to create incentives for more validators to join the network. The
slashing mechanism will prevent the misbehaving nodes from harming the chain.

Reference:

A Kiayias, A Russell, B David, R Oliynykov - 2017, Ouroboros: A Provably Secure
Proof-of-Stake Blockchain Protocol. Link.

2. Sharding: State Validity and Data Availability

Sharding, as a method of partitioning a blockchain’s data, introduces a potential challenge
regarding state validity and data availability. Unlike traditional non-sharded blockchains, where
participants validate the entire chain, sharding complicates this by breaking the network into
multiple partitions or "shards." In a sharded network, participants cannot always be certain that
the state they interact with corresponds to a valid sequence of blocks, or that the sequence of
blocks is the canonical chain of that shard.

To address this challenge, we are investigating the use of advanced cryptographic techniques
like Merkle Trees and Polynomial Commitments. These solutions allow participants to verify the
correctness of data with minimal data retrieval, rather than having to download and verify the full
history of a shard.

chml.network 83

https://eprint.iacr.org/2016/1067.pdf
https://eprint.iacr.org/2018/601.pdf
https://link.springer.com/chapter/10.1007/978-3-319-63688-%207_12
https://chml.network

References:

● Using Polynomial Commitments to Replace State Roots

Additionally, the Fisherman concept, where any honest validator can provide proof of an invalid
block with only a small amount of information, will help maintain the integrity of Chameleon’s
sharded structure.

We are also exploring Erasure Codes and leveraging ideas from Polkadot's approach, where
participants store only part of the data. This allows them to cooperate and verify the validity of the
entire chain, thus ensuring the correctness and availability of data even in the absence of full
node participation.

References:

● Nightshade: Near Protocol Sharding Design
● Polkadot White Paper

Scalability

Goal: Maximize Transaction Throughput

Throughput remains one of the most significant challenges in blockchain technology. Chameleon
is addressing this issue by applying Sharding techniques at the core layer to enhance scalability.
This enables the network to process multiple transactions in parallel, dividing the workload
across multiple shards and improving overall throughput.

In addition, we are studying how to incorporate Lightning Network and Payment Channel
techniques at the second layer. By utilizing these off-chain scaling methods, Chameleon aims to
further increase transaction speeds and reduce congestion on the main chain, ensuring fast and
efficient transaction processing.

References:

● Lightning Network Paper
● A Survey on the Lightning Network

On-chain Storage

Goal: Minimize Data Stored On-chain

Chameleon aims to reduce the amount of data stored on-chain by applying advanced

chml.network 84

https://ethresear.ch/t/using-polynomial-commitments-to-replace-state-roots/7095
https://pages.near.org/downloads/Nightshade.pdf
https://polkadot.network/PolkaDotPaper.pdf
https://lightning.network/lightning-network-paper.pdf
https://arxiv.org/pdf/1809.05088.pdf
https://chml.network

cryptographic techniques such as zk-SNARKs. This allows us to minimize the ledger size while

maintaining the security and validity of the data. We are carefully weighing the tradeoff between

keeping transaction history for transparency and reducing the amount of data stored, such as by

exploring the possibility of removing used UTXOs (Unspent Transaction Outputs).

References:

● zk-SNARKs Paper

● Coda Protocol Whitepaper

● Grin Whitepaper

Research on ZKPs: Recent Advances

Goal: Leverage Advances in Zero-Knowledge Proofs to Improve Chameleon

In line with broader advancements in cryptographic technologies, Chameleon is actively
investigating recent developments in zero-knowledge proofs (ZKPs). We are focused on
integrating these innovations to improve the privacy, scalability, and efficiency of our platform.
Notable advancements include Halo, a recursive proof composition system that eliminates the
need for a trusted setup, and SuperSonic, which offers a practical zk-SNARK with a nearly
trustless setup.

By incorporating these advancements into Chameleon, we aim to push the boundaries of
privacy-preserving technologies and improve our blockchain's performance.

References:

● Halo: Recursive Proof Composition
● SuperSonic: Practical zk-SNARK
● Awesome Zero-Knowledge Proofs

chml.network 85

https://eprint.iacr.org/2013/879.pdf
https://cdn.codaprotocol.com/v2/static/coda-whitepaper-05-10-2018-0.pdf
https://www.allcryptowhitepapers.com/grin-whitepaper
https://eprint.iacr.org/2019/1021.pdf
https://www.benthamsgaze.org/2019/02/07/introducing-sonic-a-practical-zk-snark-with-a-nearly-trustless-setup/
https://github.com/matter-labs/awesome-zero-knowledge-proofs
https://chml.network

Conclusions, Acknowledgments, and References ▸

Conclusions

We are building a new privacy-centric cryptonetwork to enhance privacy for other blockchain

ecosystems. To achieve this, we have developed a decentralized network of trustless validators

and implemented advanced cryptographic techniques such as linkable ring signatures,

homomorphic commitments, and zero-knowledge range proofs. To scale the network's

performance, we are using innovative solutions like sharding, pBFT, and proof-of-stake.

While Chameleon has not yet launched its mainnet, we are actively working on its development.

We aim to provide users with a privacy-preserving infrastructure for decentralized applications,

and when launched, Chameleon will feature a highly scalable architecture capable of handling

increasing transaction volumes.

Cryptocurrencies continue to evolve at a rapid pace. New assets are being introduced, some of

which enhance the efficiency of traditional assets like fiat (USDC) or commodities (DGX), while

others give rise to entirely new asset classes, such as programmable governance tokens (MKR). If

this trend continues, cryptocurrencies will likely become a central part of both individual and

institutional portfolios. Chameleon aims to ensure that these digital assets, and their owners, will

have the privacy and security they deserve in an increasingly transparent world.

Acknowledgments
We extend our heartfelt thanks to the 600+ founding nodes for their pivotal role in powering the

Chameleon network since its inception.

Furthermore, we are grateful for the support from our strategic partners, the broader crypto

community, and the early adopters whose continuous feedback and engagement help us

improve and evolve the network every day.

chml.network 86

https://chml.network

References

[Adam, 2018] Adam, H. (2018). Uniswap whitepaper. URL:

https://hackmd.io/C-DvwDSfSxuh-Gd4WKE_ig.

[Baneth, 2019] Baneth, T. (2019). Waterloo - a decentralized practical bridge between EOS and

Ethereum. URL:

https://blog.kyber.network/waterloo-a-decentralized-practical-bridge-between-eos-and-ethereum-

1c230ac65524.

[Benet and Dias, 2019] Benet, J., and Dias, D. (2019). libp2p specification. Technical report, URL:

https://github.com/libp2p/specs.

[Boneh et al., 2018] Boneh, D., Drijvers, M., and Neven, G. (2018). Compact multi-signatures for

smaller blockchains. In International Conference on the Theory and Application of Cryptology

and Information Security, pages 435-464. Springer.

[Boudot, 2000] Boudot, F. (2000). Efficient proofs that a committed number lies in an interval. In

International Conference on the Theory and Applications of Cryptographic Techniques, pages

431-444. Springer.

[Bojja Venkatakrishnan et al., 2017] Bojja Venkatakrishnan, S., Fanti, G., and Viswanath, P. (2017).

Dandelion: Redesigning the Bitcoin network for anonymity. Proceedings of the ACM on

Measurement and Analysis of Computing Systems, 1(1):1-34.

[Bünz et al., 2018] Bünz, B., Bootle, J., Boneh, D., Poelstra, A., Wuille, P., and Maxwell, G. (2018).

Bulletproofs: Short proofs for confidential transactions and more. In 2018 IEEE Symposium on

Security and Privacy (SP), pages 315-334. IEEE.

[Buterin et al., 2014] Buterin, V. et al. (2014). A next-generation smart contract and decentralized

application platform. White paper, 3(37).

[BTC Relay, 2019] BTC Relay (2019). A bridge between the Bitcoin blockchain & Ethereum smart

chml.network 87

https://hackmd.io/C-DvwDSfSxuh-Gd4WKE_ig
https://hackmd.io/C-DvwDSfSxuh-Gd4WKE_ig
https://blog.kyber.network/waterloo-a-decentralized-practical-bridge-between-eos-and-ethereum-1c230ac65524
https://blog.kyber.network/waterloo-a-decentralized-practical-bridge-between-eos-and-ethereum-1c230ac65524
https://blog.kyber.network/waterloo-a-decentralized-practical-bridge-between-eos-and-ethereum-1c230ac65524
https://github.com/libp2p/specs
https://github.com/libp2p/specs
https://chml.network

contracts. URL: http://btcrelay.org.

[Castro et al., 1999] Castro, M., Liskov, B., et al. (1999). Practical Byzantine fault tolerance. In OSDI,

volume 99, pages 173-186.

[Chaum and Van Heyst, 1991] Chaum, D. and Van Heyst, E. (1991). Group signatures. In Workshop

on the Theory and Application of Cryptographic Techniques, pages 257-265. Springer.

[Cheng et al., 2018] Cheng, R., Zhang, F., Kos, J., He, W., Hynes, N., Johnson, N., Juels, A., Miller,

A., and Song, D. (2018). Ekiden: A platform for confidentiality-preserving, trustworthy, and

performant smart contract execution. arXiv preprint arXiv:1804.05141.

[Croman et al., 2016] Croman, K., Decker, C., Eyal, I., Gencer, A. E., Juels, A., Kosba, A., Miller, A.,

Saxena, P., Shi, E., Sirer, E. G., et al. (2016). On scaling decentralized blockchains. In International

conference on financial cryptography and data security, pages 106-125. Springer.

[Diffie and Hellman, 1976] Diffie, W. and Hellman, M. (1976). New directions in cryptography. IEEE

Transactions on Information Theory, 22(6):644-654.

[Dwork and Naor, 1992] Dwork, C. and Naor, M. (1992). Pricing via processing or combatting junk

mail. In Annual International Cryptology Conference, pages 139-147. Springer.

[Finney, 1993] Finney, H. (1993). Detecting double-spending. URL:

https://nakamotoinstitute.org/detecting-double-spending.

[Fujisaki and Suzuki, 2007] Fujisaki, E. and Suzuki, K. (2007). Traceable ring signature. In

International Workshop on Public Key Cryptography, pages 181-200. Springer.

[Gentry and Boneh, 2009] Gentry, C. and Boneh, D. (2009). A fully homomorphic encryption

scheme, volume 20. Stanford University.

[Go, 2009] Go, T. (2009). The Go programming language specification. Technical report,

http://golang.org/doc/doc/go_spec.html, Google Inc.

chml.network 88

http://btcrelay.org
https://nakamotoinstitute.org/detecting-double-spending
https://nakamotoinstitute.org/detecting-double-spending
http://golang.org/doc/doc/go_spec.html
http://golang.org/doc/doc/go_spec.html
https://chml.network

[Goldreich et al., 1991] Goldreich, O., Micali, S., and Wigderson, A. (1991). Proofs that yield nothing

but their validity or all languages in NP have zero-knowledge proof systems. Journal of the ACM

(JACM), 38(3):690-728.

Privacy mode for Ethereum. Technical report.

pDEX: The first privacy-protecting decentralized exchange. Technical report.

[Jedusor, 2016] Jedusor, T. E. (2016). Mimblewimble. URL:

https://scalingbitcoin.org/papers/mimblewimble.txt.

[Juels, 1999] Juels, A. (1999). Client puzzles: A cryptographic countermeasure against connection

depletion attacks. In Proc. Networks and Distributed System Security Symposium (NDSS), 1999.

[King and Nadal, 2012] King, S. and Nadal, S. (2012). Ppcoin: Peer-to-peer cryptocurrency with

proof-of-stake. Self-published paper, August, 19.

[Kokoris-Kogias et al., 2018] Kokoris-Kogias, E., Jovanovic, P., Gasser, L., Gailly, N., Syta, E., and

Ford, B. (2018). Omniledger: A secure, scale-out, decentralized ledger via sharding. In 2018 IEEE

Symposium on Security and Privacy (SP), pages 583-598. IEEE.

[Kovri, 2018] Kovri. The Kovri Project, 2018. URL: https://gitlab.com/kovriproject/kovri.

[Kwon, 2014] Kwon, J. (2014). Tendermint: Consensus without mining. Draft v. 0.6, fall, 1(11).

[Li et al., 2018] Li, C., Li, P., Zhou, D., Xu, W., Long, F., and Yao, A. (2018). Scaling Nakamoto

consensus to thousands of transactions per second. arXiv preprint arXiv:1805.03870.

[Liu et al., 2004] Liu, J. K., Wei, V. K., and Wong, D. S. (2004). Linkable spontaneous anonymous

group signature for ad hoc groups. In Australasian Conference on Information Security and

Privacy, pages 325-335. Springer.

[Luu et al., 2016] Luu, L., Narayanan, V., Zheng, C., Baweja, K., Gilbert, S., and Saxena, P. (2016). A

chml.network 89

https://eprint.iacr.org/2021/283.pdf
https://scalingbitcoin.org/papers/mimblewimble.txt
https://scalingbitcoin.org/papers/mimblewimble.txt
https://gitlab.com/kovriproject/kovri
https://chml.network

secure sharding protocol for open blockchains. Proceedings of the 2016 ACM SIGSAC

Conference on Computer and Communications Security.

[Luu and Yaron, 2017] Luu, L. and Yaron, V. (2017). Kyber Network: A trustless decentralized

exchange and payment service. URL: https://coinpaprika.com/storage/cdn/whitepapers/539.pdf.

[Maxwell, 2015] Maxwell, G. (2015). Confidential transactions. URL:

https://people.xiph.org/greg/condential_values.txt (Accessed 09/05/2016).

[Merkle, 1980] Merkle, R. C. (1980). Protocols for public key cryptosystems. In 1980 IEEE

Symposium on Security and Privacy, pages 122-122. IEEE.

[Morais et al., 2019] Morais, E., Koens, T., Van Wijk, C., and Koren, A. (2019). A survey on zero

knowledge range proofs and applications. SN Applied Sciences, 1(8):946.

[Nakamoto, 2008] Nakamoto, S. (2008). Bitcoin: A peer-to-peer electronic cash system. URL:

http://www.bitcoin.org/bitcoin.pdf.

[Noether et al., 2016] Noether, S., Mackenzie, A., et al. (2016). Ring confidential transactions.

Ledger, 1:1-18.

[Pedersen, 1991] Pedersen, T. P. (1991). Non-interactive and information theoretic secure verifiable

secret sharing. In Annual International Cryptology Conference, pages 129-140. Springer.

[Reid and Harrigan, 2013] Reid, F. and Harrigan, M. (2013). An analysis of anonymity in the bitcoin

system. In Security and Privacy in Social Networks, pages 197-223. Springer.

[Ren, 2019] Ren (2019). A privacy preserving virtual machine powering zero-knowledge financial

applications. URL: https://renproject.io/litepaper.pdf.

[Rivest et al., 2001] Rivest, R. L., Shamir, A., and Tauman, Y. (2001). How to leak a secret. In

International Conference on the Theory and Application of Cryptology and Information Security,

pages 552-565. Springer.

chml.network 90

https://coinpaprika.com/storage/cdn/whitepapers/539.pdf
http://www.bitcoin.org/bitcoin.pdf
http://www.bitcoin.org/bitcoin.pdf
https://renproject.io/litepaper.pdf
https://chml.network

[Van Saberhagen, 2013] Van Saberhagen, N. (2013). Cryptonote v 2.0. URL:

https://cryptonote.org/whitepaper.pdf.

[Sasson et al., 2014] Sasson, E. B., Chiesa, A., Garman, C., Green, M., Miers, I., Tromer, E., and

Virza, M. (2014). Zerocash: Decentralized anonymous payments from bitcoin. In 2014 IEEE

Symposium on Security and Privacy, pages 459-474. IEEE.

[Szabo, 2005] Szabo, N. (2005). Trusted third parties are security holes. White Paper. URL:

https://nakamotoinstitute.org/trusted-third-parties.

[TBTC, 2019] TBTC (2019). tBTC: A decentralized redeemable BTC-backed ERC-20 token. URL:

http://docs.keep.network/tbtc/index.pdf.

[Visa, 2018] Visa (2018). Visa acceptance for retailers. URL:

https://usa.visa.com/run-your-business/small-business-tools/retail.html.

[WBTC, 2019] WBTC (2019). Wrapped Bitcoin. URL:

https://www.wbtc.network/assets/wrapped-tokens-whitepaper.pdf.

[Wood, 2014] Wood, G. (2014). Ethereum: A secure decentralised generalised transaction ledger.

URL: https://ethereum.github.io/yellowpaper/paper.pdf.

[Zamani et al., 2018] Zamani, M., Movahedi, M., and Raykova, M. (2018). Rapidchain: A fast

blockchain protocol via full sharding. IACR Cryptology ePrint Archive, 2018:460.

[Zilliqa, 2017] Zilliqa, T. (2017). The Zilliqa technical whitepaper. URL:

https://docs.zilliqa.com/whitepaper.pdf.

chml.network 91

https://cryptonote.org/whitepaper.pdf
https://cryptonote.org/whitepaper.pdf
https://nakamotoinstitute.org/trusted-third-parties
https://nakamotoinstitute.org/trusted-third-parties
http://docs.keep.network/tbtc/index.pdf
http://docs.keep.network/tbtc/index.pdf
https://www.wbtc.network/assets/wrapped-tokens-whitepaper.pdf
https://www.wbtc.network/assets/wrapped-tokens-whitepaper.pdf
https://ethereum.github.io/yellowpaper/paper.pdf
https://docs.zilliqa.com/whitepaper.pdf
https://docs.zilliqa.com/whitepaper.pdf
https://chml.network

	Chameleon Whitepaper
	 Introduction
	
	 Introduction: A Platform of Decentralized Privacy Coins
	
	
	
	 Shielding Cryptocurrencies: Turning Any Cryptocurrency Into a Privacy Coin
	Shielding any cryptocurrency into a privacy coin
	Privacy coins
	Shielding
	Unshielding

	
	Trustless Custodians: A Decentralized Approach to Cryptocurrency Custodianship
	A Decentralized Approach to Cryptocurrency Custodianship
	
	The Bond Smart Contract
	Over-Collateralized Bonds
	Auto-Liquidation
	Incentives

	Sending Cryptocurrencies Confidentially: Ring Signature, Homomorphic Commitment, and Zero-Knowledge Range Proofs
	Sending Cryptocurrencies Confidentially
	Fungibility: The Basis of Monetary Privacy
	Ring Signatures: Shielding Sending Addresses
	
	
	
	Stealth Addresses: Shielding Receiving Addresses
	How Stealth Addresses Work
	Privacy Benefits

	
	Confidential Transactions: Shielding Transacted Amounts Confidential transactions are employed to shield the transacted amounts on the Chameleon public ledger [Maxwell, 2015]. While the occurrence of privacy coin transactions remains visible, the exact amounts involved are concealed.
	
	Addressing Validation Challenges
	Preventing Inflation through Range Proofs

	Scaling Blockchain Privacy with Dynamic Sharding
	Chameleon’s Solution: Sharding for Scalability
	Shard Chains
	 Beacon Chain
	Cross shard transaction
	Dynamic Committee Size
	
	Dynamic Sharding
	Implementation
	
	
	
	
	
	
	

	
	
	 Consensus: A Combination of iPoS, Multiview-pBFT, and BLS
	Chameleon Proof-of-Stake (iPoS)
	Multiview Practical Byzantine Fault Tolerance (M_PBFT)
	Validator Life Cycle
	Slashing Rules
	
	BLS-based Aggregate Multi-Signatures from Pairing
	Implementation

	Multiview: A New Approach for PBFT Implementation
	Problem
	
	Preliminaries
	Protocol
	PROPOSE PHASE
	VOTE PHASE
	COMMIT PHASE
	Vote and Propose Rules
	Lemma 2. (Finality 2)
	Finality Theorem
	Proof:
	Theorem 1 (Consistency Proof):
	Theorem 2 (Liveness Proof):
	Worst-Case Scenario:

	Tendermint Multiview
	 Conclusion

	
	 Chameleon Software Stack: Navigating the Chameleon Source Code
	Chameleon Network Software Stack
	It could be a little overwhelming to read the Chameleon Network source code. There will be more than 1 million lines of code in the Chameleon Network codebase. This topic will provide an overview of the Chameleon Network architecture and a guide to navigating the Chameleon Network source code.
	Network Architecture
	
	Navigating the Chameleon Network Source Code
	P2P Networking
	Blockchain
	Core
	Consensus
	
	Privacy

	Bridges
	Developer Tools
	Apps

	
	Chameleon Performance
	
	 Network Incentive: CHML Mining & Distribution
	Key Features of CHML
	Token Allocation
	1. Community Airdrop (5%)
	2. Presale (20%)
	3. Reward Pool (65%)
	
	
	
	
	4. Initial Liquidity Pool (2%)
	5. Staking Infrastructure (5%)
	6. Ecosystem Development (3%)

	7. Reward Emission Schedule
	Token System
	
	Transaction Fees

	User-Created Privacy Coins
	PRIVACY COINS
	
	

	
	 Use Cases: Privacy Stablecoins, Privacy DEX, Confidential Crypto Payroll, and more
	Privacy Stablecoins as P2P Digital Cash
	Anonymous Cross-Chain Decentralized Exchanges
	Buy & Sell Crypto Anonymously
	
	
	Pay Anonymously OnlineMany distributed teams and companies are turning to crypto payroll to cut down on international transfer fees, save time, and, in some cases, pay employees in a more desirable currency. However, the major downside of traditional crypto payroll is that salary and payment details are publicly visible to anyone who examines the blockchain.With Chameleon’s anonymous payroll system, users will be able to make payments in privacy-preserving stablecoins like privacy USDT, privacy BTC, or another chosen privacy coin. This system will eliminate the issue of public exposure while still retaining all the benefits of digital payments.

	
	Highway: An Upgrade to Chameleon’s Network Topology
	Chameleon highway
	Highway Design Principles
	
	New network topology
	API
	
	Scalability of the Highway System
	Bandwidth Calculation

	Memory Requirements
	Design Choices
	Challenges and Ongoing Research

	
	
	
	
	
	
	Privacy Mode for dApps on Ethereum
	pEthereum Specifications
	What is pEthereum?
	Core Concepts

	Cross-Chain Instructions
	SHIELD instruction
	UNSHIELD Instruction
	DEPLOY Instruction
	EXECUTE instruction
	UNDEPLOY instruction
	pEthereum Developer Resources
	Source Code
	Conclusion

	
	
	
	
	
	
	Future Work: Smart Contracts, Confidential Assets, Confidential IP, and More
	Chameleon for Smart Contracts
	Highway: Scaling Chameleon to 16,384 Validators
	Confidential Assets: Unknown Asset Types
	 Confidential IP on Chameleon Network
	Availability
	Security
	2. Sharding: State Validity and Data Availability

	Scalability
	On-chain Storage
	Research on ZKPs: Recent Advances

	Conclusions, Acknowledgments, and References ▸
	Conclusions
	Acknowledgments
	
	References

